二次方程

一、选择题一、选择题3(2019泰州)方程2x2+6x10的两根为x1、x2则x1+x2等于()A.6B.6C.3D.3【答案】C【解析】根据一元二次方程根与系数的关系x1+x2623故选C.6(2019烟台)当5bc时,关于x的一元二次方程230 xbxc的根的情况为()一、选择题一、选择题10(

二次方程Tag内容描述:

1、第第 5 5 讲讲 一元二次方程的构造及应用一元二次方程的构造及应用 模块一模块一 利用根的定义构造方程利用根的定义构造方程 如果m、n分别是一元二次方程()axbxca 的两根,那么有ambmc ,anbnc ,相 反的,如果已知m、n分别满足ambmc ,anbnc ,且a ,那就可以构造一个一元二次方程 ()axbxca 使得m、n是它的解 模块二模块二 利用根系关系构造方程利用根系关系。

2、1 第第 2 2 讲讲 可化为一元二次方程的其他方程可化为一元二次方程的其他方程 模块一模块一 可化为一元二次方程的高次方程可化为一元二次方程的高次方程 在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法 1 1因式分解法:因式分解法: 如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式 分解法 2 2整体换元法:整体换元法: 在一个式子中要。

3、第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个方程,解得参数 (2)如果公共根不能直接求出,则先设出公共根,然后代入原方程,通过恒等变形求出参数的。

4、第第 3 3 讲讲 一元二次方程的判别式与根系关系一元二次方程的判别式与根系关系 模块一模块一 一元二次方程的判别式一元二次方程的判别式 1 1定义:定义: 在一元二次方程()axbxca 中,只有当系数a、b、c满足条件bac 时才有实数根这 里bac 叫做一元二次方程根的判别式,记作 2 2判别式与根的关系:判别式与根的关系: 在实数范围内,一元二次方程()axbxca 的根的情况由 bac 。

5、 2.3 课时课时 二次函数与一元二次方程二次函数与一元二次方程、不等式、不等式 一、单选题。本大题共一、单选题。本大题共 18 小题,每小题只有一个选项符合题意。小题,每小题只有一个选项符合题意。 1下列不等式: 2 0 x ; 2 5xx; 2 2ax ; 3 560 xx; 2 50mxy; 2 0axbxc .其中一定是一元二次不等式的有( ). A5 个 B4 个 C3 个 D2 个 2。

6、备战备战 2021 年中考数学真题年中考数学真题模拟题模拟题分类汇编分类汇编(上海上海专版专版) 专题专题 04 一元二次方程及应用一元二次方程及应用(40 题题) 一选择题一选择题(共共 10 小题小题) 1(2018上海)下列对一元二次方程 x2+x30 根的情况的判断,正确的是( ) A有两个不相等实数根 B有两个相等实数根 C有且只有一个实数根 D没有实数根 【分析】根据方程的系数结合根的。

7、第第 2 章一元二次方程的应用期末复习专题提升训练(附答案)章一元二次方程的应用期末复习专题提升训练(附答案) 1某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是 1000 万元,月平均增长率相同, 第一季度的总营业额是 3990 万元若设月平均增长率是 x,那么可列出的方程是( ) A1000(1+x)23990 B1000+1000(1+x)+1000(1+x)23990 C100。

8、第第 2 章一元二次方程期末复习能力达标训练章一元二次方程期末复习能力达标训练 1(附答案)(附答案) 1某超市一月份的营业额为 25 万元,三月份时因新冠疫情下降到 16 万元,若平均每月下降率为 x,则由 题意列方程应为( ) A25(1+x)216 B25(1x)216 C16(1+x)225 D251+(1x)+(1x)216 2若 x1 是关于 x 的一元二次方程 ax2+bx+10(a。

9、第第 2 章一元二次方程期末复习能力达标训练章一元二次方程期末复习能力达标训练 2(附答案)(附答案) 1关于 x 的方程 x22x+a0(a 为常数)无实数根,则点(a,a+1)在( ) A第一象限 B第二象限 C第三象限 D第四象限 2已知 x1 是一元二次方程(m+4)x2+2xm20 的一个根,则 m 的值为( ) A1 或 2 B1 C2 D0 3下列一元二次方程中,有两个不相等的实数根。

10、第第 3 3 讲讲 一元二次方程的判别式与根系关系一元二次方程的判别式与根系关系 模块一模块一 一元二次方程的判别式一元二次方程的判别式 1 1定义:定义: 在一元二次方程()axbxca 中,只有当系数a、b、c满足条件bac 时才有实数根这 里bac 叫做一元二次方程根的判别式,记作 2 2判别式与根的关系:判别式与根的关系: 在实数范围内,一元二次方程()axbxca 的根的情况由 bac 。

11、第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个方程,解得参数 (2)如果公共根不能直接求出,则先设出公共根,然后代入原方程,通过恒等变形求出参数的。

12、第第 2 2 讲讲 可化为一元二次方程的其他方程可化为一元二次方程的其他方程 模块一模块一 可化为一元二次方程的高次方程可化为一元二次方程的高次方程 在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法 1 1因式分解法:因式分解法: 如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式 分解法 2 2整体换元法:整体换元法: 在一个式子中要善于观。

13、 专题专题 11 11 一元二次方程及其应用一元二次方程及其应用 1一元二次方程的定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是 2 的方程,叫 做一元二次方程。 2一元二次方程的一般形式:ax 2+bx+c=0(a0)。其中 ax 2 是二次项,a 是二次项系数;bx是一次项,b是 一次项系数;c是常数项。 3一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次。

14、决胜决胜 2021 中考数学压轴题全揭秘精品中考数学压轴题全揭秘精品 专题专题 0 04 4 一一元二次方程及应用元二次方程及应用 【考点【考点 1】一元二次方程的根的求值问题一元二次方程的根的求值问题 【例【例 1 1】(2020 甘肃金昌甘肃金昌 中考真题中考真题)已知已知1x 是一元二次方程是一元二次方程 22 (2)40mxxm的一个根,则的一个根,则m的的 值为值为( ( ) )。

15、 考点 05 一元二次方程 本考点内容以考查一元二次方程的相关概念、 解一元二次方程、 根的判别式、 韦达定理 (根与系数的关系) 、 一元二次方程的应用题为主,既有单独考查,也有和二次函数结合考察最值问题,年年考查,分值为 20 分左右, 预计 2021 年各地中考还将继续考查上述的几个题型,为避免丢分,学生应扎实掌握. 一、一元二次方程的概念一、一元二次方程的概念 1一元二次方程一元二次方。

16、2.5 2.5 一元二次方程的应用一元二次方程的应用 第第2 2章章 一元二次方程一元二次方程 重重、难点难点 重点:重点:熟练地应用一元二次方程解决实际问题熟练地应用一元二次方程解决实际问题. . 难点难点:从实际问题中建立一元二次方程的模型从实际问题中建立一元二次方程的模型. . 新课引入新课引入 某省农作物秸秆资源巨大,但合理使用量十分有限,某省农作物秸秆资源巨大,但合理使用量十分有。

17、2.4 2.4 一元二次方程根与系数的关系一元二次方程根与系数的关系 第第2 2章章 一元二次方程一元二次方程 教学目标教学目标 a b xx 21 a c xx 21 了解一元二次方程了解一元二次方程 的两个根分别是的两个根分别是 、 ,那么:,那么: )0(0 2 acbxax 1 x 2 x 这就是一元二次方程根与系数的关系,也叫韦达定理这就是一元二次方程根与系数。

18、2.3 2.3 一元二次方程根的判别式一元二次方程根的判别式 第第2 2章章 一元二次方程一元二次方程 教学目标教学目标 1.感悟一元二次方程的根的判别式的产生的过感悟一元二次方程的根的判别式的产生的过 程;程; 2.能运用根的判别式,判别方程根的情况和进能运用根的判别式,判别方程根的情况和进 行有关的推理论证;行有关的推理论证; 3.会运用根的判别式求一元二次方程中字母系会运用根的判别式求一。

19、2.1 2.1 一元二次方程一元二次方程 第第2 2章章 一元二次方程一元二次方程 1 1、什么叫方程?什么叫方程的解?我们学了哪些、什么叫方程?什么叫方程的解?我们学了哪些 方程?方程? 2 2、什么是一元一次方程?它的一般形式是怎样的?、什么是一元一次方程?它的一般形式是怎样的? 3 3、我们知道了利用一元一次方程可以解决生活中、我们知道了利用一元一次方程可以解决生活中 的一些实际问题,你。

20、第二章第二章 一元二次方程一元二次方程 2.3 2.3 一元二次方程根的判别式一元二次方程根的判别式 基础导练基础导练 1.已知(m-1)x 2+2mx+(m-1)=0 有两个不相等的实数根,则 m 的取值范围是( ) A.m 1 2 B.m 1 2 且 m1 D. 1 2 m1 2.已知 a,b,c 分别是三角形的三边,则方程(ab)x 22cxab0 的根的情况是(。

21、 第二章第二章 一元二次方程一元二次方程 2.52.5 一元二次方程的应用一元二次方程的应用 基础导练基础导练 1.某校九年级学生毕业时, 每个同学都将自己的相片向全班其他同学各送一张留作纪念, 全班共送了 2 070 张相片,如果全班有 x 名学生,根据题意,列出方程为( ) A.x(x-1)=2 070 B.x(x+1)=2 070 C.2x(x+1)=2 070 。

22、 第二章第二章 一元二次方程一元二次方程 2.42.4 一元二次方程根与系数的关系一元二次方程根与系数的关系 基础导练基础导练 1. 若 3 是关于方程 x 2-5x+c=0 的一个根,则这个方程的另一个根是( ) A.-2 B. 2 C.-5 D.5 2. 已知关于 x 的一元二次方程 x 2-bx+c=0 的两根分别为 x 1=1,x2=-2,则 b 与 c 的值分别为(。

23、 第二章第二章 一元二次方程一元二次方程 2.12.1 一元二次方程一元二次方程 基础导练基础导练 1.某班学生毕业时,每个同学都要给其他同学写一份留言作为纪念,全班学生共写了 1 560 份留言.如果 全班有 x 名学生,根据题意,列出方程为( ) A. (x 1) 2 x =1 560 B. (x 1) 2 x =1 560 C.x(x-1)=1 560 D.x(x+。

24、2021 年中考一轮复习一元二次方程常考题型专题训练年中考一轮复习一元二次方程常考题型专题训练 1关于 x 的一元二次方程 x2+(k2)x4+k0 根的情况,下列说法正确的是( ) A有两个不相等的实数根 B有两个相等的实数根 C无实数根 D无法确定 2如图,在宽为 20 米,长为 32 米的矩形地面上修筑同样宽的道路(图中阴影部分) ,余下部分种植草坪, 要使草坪的面积为 540 平方米,设道。

25、第7课时 一元二次方程及其应用 课标要求 1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效 模型,经历估计方程解的过程. 2.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程. 3.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等. 4.(选学)了解一元二次方程的根不系数的关系. 5.能根据具体问题的实际意义,检验方程的解是否合理. 。

26、第 11 课时 一元二次方程 教学目标:教学目标:通过复习,查缺补漏,发展学生数学建模素养,发展学生发散思维,提高综合应试水平. 复习重点:复习重点:一元二次方程的解法与应用 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例 1.若 2 是方程的一个根,则常数 c 是 4 2 0 xc,这个方程的另一个根为 2 . 知识点:1.等式两边都是整式,。

27、第2章 一元二次函数、方程和不等式 2.3 二次函数与一元二次方程、不等式 函数、方程、不等式知识回顾 在初中,我们从一次函数的角度看一元一次方程,一元一次不等式, 发现了三者之间的内在联系,利用这种联系可以让我们更简便的解决问题: 对于二次函数、一元二次方程和一元二次不等式, 他们的联系又是怎样的呢? 一元二次不等式的概念 【问题】园艺师傅打算在绿地上用栅栏围成一个矩形区域种 。

28、1.定义 只含有 个未知数,并且未知数的最高次数是 的整式方程叫一元二次方程. 2.一般形式 .,第6讲 一元二次方程,一元二次方程的定义及一般形式,一,2,ax2+bx+c=0(a0,a,b,c是已知数),一元二次方程的解法,一半,根的判别式及根与系数的关系,1.根的判别式 关于x的一元二次方程ax2+bx+c=0(a0)的根的判别式为 ,通常用符号“ ”表示,即=b2-4ac. (1)=b2-4ac0一元二次方程有 的实数根. (2)=b2-4ac=0一元二次方程 的实数根. (3)=b2-4ac0一元二次方程 实数根. 2.根与系数之间的关系 若关于x的一元二次方程ax2+bx+c=0(a0)有两个实数根分别为x1,x2,则x1+x。

29、,第3课时 一元二次方程,考点突破,3,中考特训,4,广东中考,5,课前小测,D,C,1若一元二次方程x22xm0有两个不相同的实数根,则实数m的取值范围是( ) Am1 Bm1 Cm1 Dm1 2某中学组织初三学生篮球比赛,以班为单位, 每两班之间都比赛一场,计划安排15场比赛,则 共有多少个班级参赛?( ) A4 B5 C6 D7,课前小测,D,课前小测,4(2019舟山) 在x2_40的 括号中添加一个关于x的一次项,使方程有 两个相等的实数根 5(2019盐城) 设x1、x2是方程x23x 20的两个根,则x1x2x1x2_,4x,1,知识精点,知识点一:一元二次方程及其的解法,2解法: (1)直接开平方法:形如x。

30、,课时8 一元二次方程及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程 (1)定义:在整式方程中,只含_个未知数,并且未知数的最高次数是_的方程叫做一元二次方程 (2)一元二次方程的一般形式是_其中_叫做二次项,_叫做一次项,_叫做常数项;_叫做二次项的系数,_叫做一次项的系数 温馨提示 判断方程是否为一元二次方程,应先整理,化成一般形式后再进行判断,注意一元二次方程一般形式中a0.,夯实基本 知已知彼,2. 一元二次方程的解法 (1)直接开平方法:形如x2n或(xm)2n(n0)的方程可用直接开平方法 。

31、,课时9 一元二次方程根的判别式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程根的判别式 关于x的一元二次方程ax2bxc0(a0)的根的判别式为_ (1)b24ac0一元二次方程ax2bxc0(a0)有两个_实数根,即x1,2_ (2)b24ac0一元二次方程ax2bxc0(a0)有_相等的实数根,即x1x2_ (3)b24ac0一元二次方程ax2bxc0(a0)_实数根 温馨提示 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件 2. 一元二次方程根与系数的关系 若关于x的一元二次方程ax2bxc0(a0)有两根分别为x1,x2,那。

32、第10讲 一元二次方程,一、一元二次方程的有关定义 1. 一元二次方程的概念:只含有_未知数,并且未知数的最高次数是_,这样的整式方程就是一元二次方程 2. 一般表达式:_,其中_是二次项,_叫二次项系数;_是一次项,_叫一次项系数,_是常数项二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式 3. 一元二次方程的解:使一元二次方程两边相等的_的值,就是一元二次方程的解,一个,2,ax2bxc0(a0),ax2,a,bx,b,c,未知数,二、一元二次方程的解法 1. 直接开平方法:适用于能。

33、第二章 方程与不等式,第一部分 基础过关,第3讲 一元二次方程,3,考情通览,4,5,1一元二次方程 (1)一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程 (2)一元二次方程的一般形式:ax2bxc0(a,b,c是常数,且a0) (3)一元二次方程的解的概念:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,知识梳理,要点回顾,6,1.(1)若(m2)xm22mx10是关于x的一元二次方程,则m的值为_. (2)将方程x22x153x化为一般形式为_,其中a_,b_,c_. (3)已知x1是关于x的一元二次方程x2ax2b0的解,则2a4b( ) A2。

34、一元二次方程复习,一、知识导图,考点分析 1、期末分值23分,约占20% 2、题型分布选择题2题,填空题1题,解方程1题,实际问题1题; 3、选择、填空主要考查一元二次方程的解,根的判别式、根与系数的关系,求字母的取值范围,简易的列方程; 4、用公式法解方程; 5、实际应用,如增长率、面积、销售,(一)、定义、一般形式、判别式,1、 只含有一个未知数,未知数的最高次数是_的_式方程,叫做一元二次方程。 2、一般形式: . 3、使方程左右两边相等的_就是这个一元二次方程的解,也叫做一元二次方程的根,二次,整,ax2+bx+c=o (ao),考点一,未知数。

35、,苏科数学,5.4 二次函数与一元二次方程(2),忆一忆,函数yx22x3的图像如图所示,你能看出方程x22x30的解吗?,函数yx22x1的图像如图所示,你能看出方程x22x10的解吗?,想一想,利用计算器进行探索,x 0.4,缩小它的范围,x 0.41,x 0.414,继续缩小它的范围,算一算,你能用同样的方法求方程的另一个根吗?试试看!,做一做,我们也可以用取中间值逼近的方法去求它的近似根,2x 3,2 x 2.5,2.25 x 2.5,2 x 2.5,继续逼近,2.375 x2.5,2.375 x2.4375,x2.4,继续逼近.,2,3,+,2.5,+,2.25,2.375,2x3,2x2.5,2.25x2.5,2.375x2.5,用线段表示逼近的过程,_,_,_,2.43。

36、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。

37、,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两根的积与系数有什么关系?,苏科数学,二、数学活动,你能解释刚才的发现吗?,则,一元二次方程 ax2bxc0 (a0),如果b24ac0,它的两个根分别是x1、x2,活动1 用公式验证,苏科数学,二、数学活动,苏科数学,二、数学活动,苏科数学,如果一元二次方。

38、,苏科数学,1.1 一元二次方程,29中致远 曹霞,正方形桌面的面积是2m2 ,问:正方形的边长与面积之间有何数量关系?你用什么样的数学式子来描述它们之间的关系?,设正方形桌面的边长是xm,可得:x22,请你说一说,问题2:某校图书馆的藏书在两年内从5万册增加到9.8万册,问:图书馆藏书年平均增长的百分率与藏书量之间有何关系?你用什么样的数学式子来描述它们之间的关系?,设图书馆的藏书平均每年增长的百分率是x,图书馆的藏书一年后为5(1x)万册,两年后为5(1x)2万册,可得:5(1x)2 9.8,请你想一想,问题1:如图,矩形花圃一面靠墙,另外。

39、2019中 考 试 题 分 类 知 识 点 12 一 元 二 次 方 程 2019第 一 批一 、 选 择 题 (2019 泰 州 ) 方 程 2x2+6x 1 0的 两 根 为 x1、 x2,则 x1+x2等 于 ( )A. 6 B.6 C. 3 D.3【 答 案 】 C 【 解 析 】 根 据 一 元 二 次 方 程 根 与 系 数 的 关 系 ,x1+x2 62 3,故 选 C. ( 2019 烟 台 ) 当 5b c 时 , 关 于 x的 一 元 二 次 方 程 23 0x bx c 的 根 的 情 况 为 ( ) A 有 两 个 不 相 等 的 实 数 根 B 有 两 个 相 等 的 实 数 根C 没 有 实 数 根 D 无 法 确 定【 答 案 】 A 【 解 析 】 因 为 5b c , 所 以 5c b , 因 为 2。

40、1. 正方形桌面的面积是 m2 ,求它的边长。,可以直接计算出结果。,提示,根据正方形面积公式 S = a2 ,得到,cm,可以用列方程求解吗?,a2 =,新课导入,2.两个连续正奇数的积是 255,求这两个数。,可以直接计算出结果吗?,1,2,3,4,5,6 ?,可以用列方程求解。,提示,设前一个奇数为 x ,,则后一个奇数为 x + 2,x( x 2 ),= 255,整理,得,x2 2x = 255,【知识与能力】了解一元二次方程的概念、一般式 ax2 bx c = 0(a0)及其派生的概念。应用一元二次方程概念解决一些简单题目。通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方。

41、第6讲 一元二次方程及其应用,考法1,考法2,考法3,考法4,考法5,一元二次方程的有关概念 一元二次方程的概念必须满足三个条件:是整式方程;只含有一个未知数;未知数的最高次数是2. 例1下列方程一定是一元二次方程的是( ) A.3x2+4- =0 B.5x2-6y-3=0 C.ax2-x+2=0 D.3x2-2x-1=0 答案:D 方法点拨解决此类问题的关键是牢记并理解一元二次方程的定义,特别是二次项系数应为非零数,即a0这一隐含条件.,考法1,考法2,考法3,考法4,考法5,一元二次方程的解法 一元二次方程的基本解法有四种:(1)直接开方法;(2)因式分解法;(3)配方法;(4)公式法.在解一元二次方。

【二次方程】相关PPT文档
2.3二次函数与一元二次方程不等式 课件2
【二次方程】相关DOC文档
【二次方程】相关PDF文档
【二次方程】相关其他文档
标签 > 二次方程[编号:177]