第01练 锐角三角函数的定义

tADC 中,(8x) 24 2x 2,解得 x5.AD5,CD853,cosADC .DCAD 352(2017河北模拟)如图,AD 是ABC 的中线,tanB ,cosC ,AC .求:13 22 2(1)BC 的长;(2)sinADC 的值解:(1)过点 A 作 AEBC 于点 E.cosC

第01练 锐角三角函数的定义Tag内容描述:

1、tADC 中,(8x) 24 2x 2,解得 x5.AD5,CD853,cosADC .DCAD 352(2017河北模拟)如图,AD 是ABC 的中线,tanB ,cosC ,AC .求:13 22 2(1)BC 的长;(2)sinADC 的值解:(1)过点 A 作 AEBC 于点 E.cosC ,C45.22在 RtACE 中,CEACcosC1,AECE1.在 RtABE 中,tanB ,即 ,13 AEBE 13BE3AE3.BCBECE4.(2)AD 是ABC 的中线,CD BC2.12DECDCE1.AEBC,DEAE,ADC45.sinADC .22重难点 1 解直角三角形2(2018河北模拟)已知,在ABC 中,ACB90,tanB ,AB5,D 在 AB 上43(1)求 BC 的长;(2)如图 1,若CDBB,求 sinDCB 的值;(3)如图 2,过点。

2、查解直角三角形的应用坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答2(2019广西)小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)A3.2米B3.9米C4.7米D5.4米【答案】C【解析】如图,过点O作OEAC于点E,延长BD交OE于点F,设DF=x,tan65=,OF=xtan65,BF=3+x,tan35=,OF=(3+x)tan35,2.1x=0.7(3+x),x=1.5,OF=1.52.1=3.15,OE=3.15+1.5=4.654.7,故选C【。

3、0.26,tan75 3.73, 1.73)3第 1 题图解:tan OBCtan30 ,OC BC,3OCB3sin OACsin75 0.97,A 0.97,340BCBC67(cm)答:该台灯照亮水平面的宽度 BC 约为 67 cm.2. 某种三角形台历放置在水平桌面上,其左视图如图所示,点 O 是台历支架 OA,OB 的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心,现测得 OAOB14 cm,CACB4 cm,ACB120,台历顶端螺旋连接线圈所在圆的半径为 0.6 cm.求点 O 到直线 AB 的距离( 结果保留根号)第 2 题图解:如解图,连接 AB、OC,并延长 OC 交 AB 于点 D,第 2 题解图OA OB,ACBC,OC 垂直平分 AB,即 ADBD,CDA90,又ACB120,ACD 60 ,在 RtACD 中,sinACD ,ADACAD ACsin60°。

4、特殊角的三角函数值,并能进行熟练计算; 能根据题目已知条件,进行解三角形; 能利用三角函数进行简单的应用,并解决问题。
授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范)如图,在 中,(1) (2) (3) 2、定义中应该注意的几个问题(1)sinA、cosA、tanA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)(2)sinA、 cosA、tanA是一个比值(数值)(3)sinA、 cosA 、tanA的大小只与A的大小有关,而与直角三角形的边长无关。
(二)特殊角的三角函数值 度 数sincostan 30 45160(三)三角函数之间的关系1、余角关系:在A+B=90时 。

5、特殊角的三角函数值,并能进行熟练计算; 能根据题目已知条件,进行解三角形; 能利用三角函数进行简单的应用,并解决问题。
授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范)如图,在 中,(1) (2) (3) 2、定义中应该注意的几个问题(1)sinA、cosA、tanA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)(2)sinA、 cosA、tanA是一个比值(数值)(3)sinA、 cosA 、tanA的大小只与A的大小有关,而与直角三角形的边长无关。
(二)特殊角的三角函数值 度 数sincostan 30 45160(三)三角函数之间的关系1、余角关系:在A+B=90时 。

6、特殊角的三角函数值,并能进行熟练计算; 能根据题目已知条件,进行解三角形; 能利用三角函数进行简单的应用,并解决问题。
授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范)如图,在 中,(1) (2) (3) 2、定义中应该注意的几个问题(1)sinA、cosA、tanA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)(2)sinA、 cosA、tanA是一个比值(数值)(3)sinA、 cosA 、tanA的大小只与A的大小有关,而与直角三角形的边长无关。
(二)特殊角的三角函数值 度 数sincostan 30 45160(三)三角函数之间的关系1、余角关系:在A+B=90时 。

7、边长为1的网格中,点A,B,C均在格点上,则tanC的值是()图5-ZT-2A.2 B.43 C.1 D.343.如图5-ZT-3,在RtABC中,C=90,AC=12,BC=5.(1)求AB的长;(2)求sinA,cosA,tanA,sinB,cosB,tanB的值.图5-ZT-34.如图5-ZT-4,在ABC中,AB=8,BC=6,SABC=12.试求 tanB的值.图5-ZT-4技巧二巧设参数求锐角三角函数值5.在RtABC中,C=90,若tanA=512,则cosA的值是()A.512 B.813 C.23 D.12136.在ABC中,若ACBCAB=51213,则 cosA的值为()A.1213 B.513 C.512 D.1257.已知为锐角,且cos=13,求sin和tan的值.。

标签 > 第01练 锐角三角函数的定义[编号:202148]