2019年中考数学临考冲刺专题练测圆的综合题含解析

锐角三角函数的实际应用1. 如图为放置在水平桌面上的台灯的平面示意图,灯臂 AO 长为 40 cm,与水平面所形成的夹角OAM 为 75,由光源 O 射出的边缘光线 OC、OB与水平面所形成的夹角OCA、OBA 分别为 90和 30,求该台灯照亮水平面的宽度 BC.(结果精确到 1 cm,参考数据:

2019年中考数学临考冲刺专题练测圆的综合题含解析Tag内容描述:

1、锐角三角函数的实际应用1. 如图为放置在水平桌面上的台灯的平面示意图,灯臂 AO 长为 40 cm,与水平面所形成的夹角OAM 为 75,由光源 O 射出的边缘光线 OC、OB与水平面所形成的夹角OCA、OBA 分别为 90和 30,求该台灯照亮水平面的宽度 BC.(结果精确到 1 cm,参考数据: sin750.97,cos750.26,tan75 3.73, 1.73)3第 1 题图解:tan OBCtan30 ,OC BC,3OCB3sin OACsin75 0.97,A 0.97,340BCBC67(cm)答:该台灯照亮水平面的宽度 BC 约为 67 cm.2. 某种三角形台历放置在水平桌面上,其左视图如图所示,点 O 是台历支架 OA,OB 的交点,同时又。

2、 1 几何图形的证明与计算类型一 简单几何图形的证明与计算1.如图,在正方形 ABCD 中,E 是边 AB 上的一动点(不与 A,B 重合),连接DE,点 A 关于 DE 的对称点为 F,连接 EF 并延长交 BC 于点 G,连接 DG,过点 E 作 EHDE 交 DG 的延长线于点 H,连接 BH(1)求证:GF=GC;(2)用等式表示线段 BH 与 AE 的数量关系,并证明;(3)若正方形 ABCD 的边长为 4,取 DH 的中点 M,请直接写出线段 BM 长的最小值第 1 题图证明:(1)如解图,连接 DF,四边形 ABCD 是正方形,DA= DC, A=C=90 ,点 A 关于直线 DE 的对称点为 F,ADEFDE, 。

3、 1 切线的相关证明与计算1、如图所示, 直线 DP 和 O 相切于点 C,交直径 AE 的延长线于点 P, 过点 C 作AE 的垂线, 交 AE 于点 F, 交O 于点 B,作平行四边形 ABCD,连接 BE, DO,CO.(1)求证: DA=DC ;(2)求 P 及AEB 的大小.第 1 题图(1)证明:在平行四边形 ABCD 中,AD BC ,CBAE,ADAE,DAO90,又直线 DP 和O 相切于点 C,DCOC ,DCO90,在 RtDAO 和 RtDCO 中,DO DOAO CO)RtDAO RtDCO(HL),DADC;(2)解:CBAE ,AE 是O 的直径,CF FB BC,12又四边形 ABCD 是平行四边形,。

4、 函数的实际应用1.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出 A、B 两种款式的服装合计 30 件,并且每售出一件 A 款式和 B 款式服装,甲店铺获利润分别为 30 元和 35 元,乙店铺获利润分别为 26 元和 36 元某日,王老板进A 款式服装 36 件,B 款式服装 24 件,并将这批服 装分配给两个店铺各 30 件 (1)怎样将这 60 件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同? (2)怎样分配这 60 件服装能保证在甲店铺获利润不小于 950 元的前提下,王老板获利的总利润最大?最大的总利润是多少?解:(1)设 A 。

5、辅助圆问题1. 已知点 A、 B、 C 均在半径为 R 的 O 上问题探究(1)如图 ,当A45,R1 时,求BOC 的度数和 BC 的长度;(2)如图 ,当A 为锐角时,求证:BC2 RsinA;问题解决(3)若定长线段 BC 的两个端点分别在 MAN 的两边 AM、AN 上滑动,且点B、C 均与点 A 不重合如图,当MAN 60,BC2 时,分别作BPAM,CP AN,交点为 P,试着探究线段 BC 在整个滑动过程中,P、A 两点之间的距离是否为定值,若是,求出 PA 的长度;若不是,请说明理由第 1 题图(1)解: 点 A、B、C 均在O 上,BOC2 A24590,又OBOC1,BC ;2(2)证明: 如解图 ,作直径 CE,连接 。

6、 1 函数与几何图形的综合题1.已知抛物线 y=ax2+bx-8(a0 )的对称轴是直线 x =1,(1)求证:2a+ b=0;(2)若关于 x 的方程 ax2+bx-8=0,有一个根为 4,求方程的另一个根.解:(1)抛物线的对称轴为直线 x=1,- =1,2ba2a+b=0;(2)关于 x 的方程 ax2+bx-8=0,有一个根为 4,抛物线与 x 轴的一个交点为(4,0),抛物线的对称轴为 x=1,抛物线与 x 轴的另一个交点为(-2,0),方程的另一个根为 x=-22.在平面直角坐标系 xOy 中,直线 y=x+1 与 y 轴交于点 A,并且经过点B(3, n)(1)求点 B 的坐标;(2)如果抛物线 y=ax2-4ax+4a-1(。

7、几何综合题类型一 与函数结合的证明与计算1. 如图,菱形 ABCD 的对角线 AC,BD 相交于点 O,AB2,ABC120,动点 P 在线段 BD 上从点 B 向点 D 运动,PEAB 于点 E,四边形 PEBF 关于 BD对称,四边形 QGDH 与四边形 PEBF 关于 AC 对称设菱形 ABCD 被这两个四边形盖住部分的面积为 S1,BPx :(1)对角线 AC 的长为_ ;S 菱形 ABCD_;(2)用含 x 的代数式表示 S1;(3)若点 P 在移动过程中满足 S1 S 菱形 ABCD 时,求 x 的值12第 1 题图解:(1)2 ;2 ;【解法提示】菱形 ABCD 的对角线 AC,BD 相交于点3 3O,AB2, ABC120,AOB 90 ,ABO 60,AOABs。

8、 圆的综合题1.如图 ,在矩形 ABCD 中,AB=2 ,AD=3,点 P 为边 AD 或 CD 上的一个动点,以3BP 为直径作半圆 ,圆心为点 O,过点 O 作 OFAD,交 CD 于点 F,交半圆 O 于点E(1)如图 ,当点 P 与点 D 重合时,求 EF 的长;(2)当半圆 O 与 CD 相切时.求 AP 的长;求半圆 O 与正方形重叠部分的面积.第 1 题图解:(1)在矩形 ABCD 中,AB=2 ,AD=3,BD= 321当 P 和 D 重合时,BD 就是直径OB=OD,OFADBC,OF= BC= 12OE= BD= ,12EF=OEOF= ;32(2)如解图,当 E 点和 F 点重合时,半圆 O 与 CD 相切设 AP=a,则 PD=3a点 O 是 PB 的中点,OEBC。

标签 > 2019年中考数学临考冲刺专题练测圆的综合题含解析[编号:132914]