与之相关的数学模型有:最短路有:两点之间线段最小、垂线段最短、直径是最长的弦等。与之相关的数学模型有:最短路 径问题、点到圆上的点的最短(长)距离问题。解答问题时,可以将这些问题应用于解题中。径问题、点到圆上的点的最短(长)距离问题。解答问题时,可以将这些问题应用于解题中。 【典例示范】【典例示范】
二次函数区间最值Tag内容描述:
1、与之相关的数学模型有:最短路有:两点之间线段最小、垂线段最短、直径是最长的弦等。
与之相关的数学模型有:最短路 径问题、点到圆上的点的最短(长)距离问题。
解答问题时,可以将这些问题应用于解题中。
径问题、点到圆上的点的最短(长)距离问题。
解答问题时,可以将这些问题应用于解题中。
【典例示范】【典例示范】 类型一类型一 常规单线段的最值探究常规单线段的最值探究 例例 1:已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y = ax2 6ax 10交 x 轴于 A,B 两点 (点 A 在点 B 的左侧),且AB = 4,抛物线l2与l1交于点 A 与C(4,m) (1)求抛物线l1,l2的函数表达式; (2)当 x 的取值范围是_时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大; (3)直线PQ/y轴,分别交 x 轴,l1,l2于点D(n,0),P,Q,当1 2 n 5时,求线段 PQ 的最大值 【答案】(1)l1的函数表达式为y = 2x2+ 12x 10,l2的函数表达式为y = 2x2 8x + 6;(2)2 x 3;(。
2、二次函数与线段数量关系最值定值问题图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系还有一种不常见的,就是线段全长等于部分线段之和由比例线段产生的函数关系问。
3、2023年中考数学高频考点突破二次函数与最值1如图,已知抛物线,a为常数,且a0,与,轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为5,1,求抛物线的函数表达式,2,P为直线BD下方的抛。
4、中考专题训练二次函数的最值1已知y是x的函数,若函数图像上存在一点Pa,b,满足ba2,则称点P为函数图像上梦幻点例如:直线y2x1上存在的梦幻点P1,31求直线上的梦幻点的坐标;2已知在双曲线k0上存在两个梦幻点且两个梦幻点之间的距离为,。
5、中考专题训练:二次函数的最值问题1概念提出如图 ,若正DEF的三个顶点分别在正ABC的边ABBCAC上,则我们称DEF是正ABC的内接正三角形1求证:ADFBED问题解决利用直尺和圆规作正三角形的内接正三角形保留作图痕迹,不写作法2如图 ,。
6、20232023 年九年级数学中考复习:二次函数的最值年九年级数学中考复习:二次函数的最值 一单选题一单选题 1已知函数223yxx,当 0 xm时,有最大值 3,最小值 2,则 m的取值范围是 Am1 B0m2 C1m2 D1m3 2二次。
7、2,3D3,6答案B解析f(x)(x1)22,当x1时,有最大值2;当x3时,有最小值6.3下列函数中,在区间(0,)上是递增函数的是()Ayx22x1ByCyDy答案C解析yx22x1在1,)上递增,而在(0,1上递减;y在(0,)上是递减函数;y在0,1上递增,1,2上递减只有y在(,1)上递增,在(1,)上递增,从而在(0,)上递增4二次函数yx2bxc的图象的最高点为(1,3),则bc_.答案6解析由已知bc6.5二次函数yx24x3的值域是_答案(,7解析因为yx24x3(x24x4)7(x2)27.所以这个函数的值域是(,76用长度为24m的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_m.答案。
8、第第 7 章章 二次函数的最值问题二次函数的最值问题 知识衔接 初中知识回顾 二次函数的增减性二次函数的增减性 当0a时,在对称轴左侧,y 随着 x 的增大而减少;在对称轴右侧,y 随着 x 的增大而增大;当0a时,在对称轴左侧,y 随着 。
9、二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积,如直角三角形,平行四边形,菱形,矩形的面积计算问题,以及不规。
10、中考专题训练:二次函数的最值1已知二次函数图象的顶点为,且与轴交于点,1求该函数的解析式2点是抛物线上不同的两点若,求之间的数量关系若,求的最小值2已知二次函数1若此函数图象与x轴只有一个交点,试写出a与b满足的关系式2若,点是该函数图象上。
11、二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积,如直角三角形,平行四边形,菱形,矩形的面积计算问题,以及不规。
12、示数的字母,最后整理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy,那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 。
13、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
14、递减(递增),在,)上递增(递减),图象曲线开口向上(下),在x处取到最小(大)值f(),这里b24ac.点(,)叫作二次函数图象的顶点.题型一求二次函数的解析式例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数解析式解方法一利用二次函数一般式设f(x)ax2bxc(a0)则由得ba,则2ac1,即c2a1.代入整理得a24a,解得a4,或a0(舍去)b4,c7.因此所求二次函数解析式为y4x24x7.方法二利用二次函数顶点式设f(x)a(xm)2n(a0)f(2)f(1),抛物线对称轴为x,即m.又根据题意函数有最大值为n8,yf(x)a(x)28,f(2)1,a(2)281.解之得a4.f(x)4(x)284x24x7.方法三利用两根式由已知f(x)10的两根为x。
15、理、变形,根据要求写出定义域关 键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错 【方法揭秘】 由勾股定理产生的函数关系,在两种类型的题目中比较常用 类型一,已知“边角边”,至少一边是动态的,求角的对边如图 1,已知点 A 的坐标为(3, 4),点 B 是 x 轴 正半轴上的一个动点,设 OBx,ABy,那么我们在直角三角形 ABH 中用勾股定理,就可以得到 y 关于 x 的函数关系式 类型二,图形的翻折已知矩形 OABC 在坐标平面内如图 2 所示,AB5,点 O 沿直线 EF 翻折后,点 O 的对应点 D 落在 AB 边上,设 ADx,OEy, 那么在直角三角形 AED 中用勾股定理就可以得到 y 关于 x 的函数关系式 图 1 图 2 【典例分析】 例 1 如图 1,在 RtABC 中,BAC90 ,B60 ,BC16cm,AD 是斜边 BC 上的高,垂足为 D,BE 1cm,点 M 从点 B 出发沿 BC 方向以 1cm/s 的速度运动,点 N 从点 E 出发,与点 M 同时同方向以。
16、 考纲要求考纲要求: : 1. 会用描点法画出二次函数的图像,理解二次函数的性质。
2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。
基础知识回顾基础知识回顾: : 二次函数的图象和性质 二次函数的 图象和性质 图象 开口 向上上 向下下 对 称 轴 x 顶 点 坐标 增 减 性 当x时, y随x的增大而增大增大; 当 x时, y 随 x 的增大。
17、3 -9 -6 Ox y B A 第第 9 9 讲讲 二次函数的线段最值和面积最值二次函数的线段最值和面积最值 模块一:二次函数的线段最值模块一:二次函数的线段最值 1定点在同侧,需要对称转化为异侧; 2动线段端点不重合,需要平移转化到同一点 模块二:二次函数的面积最值模块二:二次函数的面积最值 1铅垂法: 1 2 S 水平宽 铅垂高 分三步走:分三步走: (1)过动点作铅垂线,交另外两。
18、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y 表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b 。
19、第第 8 8 讲讲 二次函数的区间最值及应用二次函数的区间最值及应用 模块模块一:二次函数的一:二次函数的区间最值区间最值 1定轴定区间 对于二次函数 2 (0)yaxbxc a在mxn 上的最值问题(其中a、b、c、m和n均为定值, max y表示 y的最大值, min y 表示y的最小值) (1)若自变量x为全体实数,如图,函数在 2 b x a 时,取到最小值,无最大值 (2)若 2 b n。
20、1. 函数 y = ax2+ bx + c ( a 0 )图象与 x 轴交于点 (2,0) ,顶点坐标为 ( 1,n) , 其中 n 0 ,以下结论正确的是() 。
abc 0 ; 函数 y = ax2+ bx + c ( a 0 )在 x = 1 , x = 2 处的函数值相等; 函数 y = kx + 1 的图象与 y = ax2+ bx + c ( a 0 )的函数图象总有两个不同的交点; 。