5.2第1课时函数的表示方法 学案含答案

13.3函数yAsin(x)的图象 第1课时函数yAsin(x)的图象及变换 学习目标1.理解yAsin(x)中,A对图象的影响.2.掌握ysin x与yAsin(x)的图象间的变换关系,并能正确地指出其变换步骤 知识点一(0)对函数ysin(x),xR的图象的影响 如图所示,对于函数ysin(x)

5.2第1课时函数的表示方法 学案含答案Tag内容描述:

1、13.3函数yAsin(x)的图象第1课时函数yAsin(x)的图象及变换学习目标1.理解yAsin(x)中,A对图象的影响.2.掌握ysin x与yAsin(x)的图象间的变换关系,并能正确地指出其变换步骤知识点一(0)对函数ysin(x),xR的图象的影响如图所示,对于函数ysin(x)(0)的图象,可以看作是把ysin x的图象上所有的点向左(当0时)或向右(当1时)或伸长(当01时)或缩短(。

2、1.2.3三角函数的诱导公式第1课时诱导公式(一四)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题设角的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos ,sin )知识点一诱导公式一终边相同的角的同一三角函数值相等即有诱导公式一sin(2k)sin cos(2k)cos tan(2k)tan ,其中kZ知识点二诱导公式二角的终边与角的终边关于x轴对称,角的终边与单位圆的交点P1与P也关于x轴对称,因此点P1的坐标是(cos ,sin ),它们的三角函数关系如下:诱导公式二si。

3、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.4.掌握正弦曲线、余弦曲线的性质知识点一正弦函数图象1正弦函数的图象叫做正弦曲线如图:2正弦曲线的作法(1)几何法借助三角函数线(2)描点法五点法用“五点法”画正弦曲线在0,2上的图象时所取的五个关键点为(0,0),(,0),(2,0)知识点二余弦函数图象1余弦函数的图象叫做余弦曲线如图。

4、2.2.3对数函数的图象和性质第1课时反函数及对数函数的图象和性质学习目标1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质知识链接1作函数图象的步骤为列表、描点、连线另外也可以采取图象变换法2指数函数yax(a0且a1)的图象与性质.a10a1图象定义域R值域(0,)性质过定点过点(0,1),即x0时,y1函数值的变化当x0时,y1;当x0时,0y1当x0时,0y1;当x0时,y1单调性是R上的增函数是R上的减函数预习导引1对数函数的概念把函数ylogax(x0,a0,a1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义。

5、21.2指数函数的图象和性质第1课时指数函数的图象和性质学习目标1.理解指数函数的概念和意义.2.能借助计算器或计算机画出指数函数的图象.3.初步掌握指数函数的有关性质知识链接1arasars;(ar)sars;(ab)rarbr.其中a0,b0,r,sR.2在初中,我们知道有些细胞是这样分裂的:由1个分裂成2个,2个分裂成4个,.1个这样的细胞分裂x次后,第x次得到的细胞个数y与x之间构成的函数关系为y2x,x0,1,2,预习导引1函数yax叫作指数函数,其中a是不等于1的正实数,函数的定义域是R.2从图象可以“读”出的指数函数yax(a1)的性质有:(1)图象总在x轴上方,且。

6、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算学习目标1.掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来知识点一平面向量的坐标表示1平面向量的坐标(1)在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i,j作为基底对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对有序实数x,y,使得axiyj.平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的(直角)坐标,记作a(x,y)(2)在平面直角坐标平面。

7、5.2第1课时二次函数y=ax2的图像和性质知识点 1二次函数y=ax2的图像的画法1.教材“操作与思考”变式 用描点法画出二次函数y=2x2的图像.解:(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值.x-2-1012y(2)描点:以表中各对x,y的值作为点的,在图5-2-1的平面直角坐标系中描出对应的点.(3)连线:用平滑的顺次连接所描出的各点.图5-2-12.下列图像中,是二次函数y=x2的图像的是()图5-2-2知识点 2二次函数y=ax2的图像和性质3.教材练习第2题变式 二次函数y=-3x2的图像的开口方向为,顶点坐标是,对称轴是,当x0时,y随x的增大而;当x=时,y有最值是.4.下。

8、1.3.2利用导数研究函数的极值 第1课时利用导数研究函数的极值 学习目标1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.4.会利用极值解决方程根与函数图象的交点个数问题 知识点极值的概念 思考1观察yf(x)的图象,指出其极大值点和极小值点及极值 答案极大值点为e,g,i,极大值为f(e),f(g。

9、3 3. .1.21.2 函数的单调性函数的单调性 第第 1 1 课时课时 函数单调性的定义与证明、函数的最值函数单调性的定义与证明、函数的最值 学习目标 1.理解函数的单调性的定义, 能运用函数图像理解和研究函数的单调性.2.会用函 数单调性的定义判断(或证明)一些函数的单调性,会求一些具体函数的单调区间.3.理解函数 的最大值和最小值的概念,能借助函数的图像和单调性,求一些简单函数的最值 知。

10、3 3. .1.31.3 函数的奇偶性函数的奇偶性 第第 1 1 课时课时 函数的奇偶性函数的奇偶性 学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶 函数图像的对称性解决简单问题 知识点 函数奇偶性的概念及图像特点 奇偶性 偶函数 奇函数 条件 设函数 yf(x)的定义域为 D,如果对 D 内的任意 一个 x,都有xD 结论 f(x)f(x) f(x)。

11、5.35.3 函数的单调性函数的单调性 第第 1 1 课时课时 函数的单调性函数的单调性 学习目标 1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3. 会用定义证明函数的单调性 知识点一 增函数与减函数的定义 前提条件 设函数 yf(x)的定义域为 A,区间 IA 条件 如果对于区间 I 内的任意两个值 x1,x2,当 x1x2时 都有 f(x1)f(x2)。

12、5.1函数的概念和图象 第1课时函数的概念 学习目标1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域 知识点函数的概念 概念 给定两个非空实数集合A和B,如果按照某种对应关系f,对于集合A中的每一个实数x,在集合B中都有唯一的实数y和它对应,那么就称f:AB为集合A到集合B的一个函数 对应关系 yf(x),xA 对应关系相同,定义域相同的两。

13、3 32.12.1 单调性与最大单调性与最大( (小小) )值值 第第 1 1 课时课时 函数的单调性函数的单调性 学习目标 1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3. 会用定义证明函数的单调性 知识点一 增函数与减函数的定义 一般地,设函数 f(x)的定义域为 I,区间 DI: (1)如果x1,x2D,当 x1x2时,都有 f(x1)f(。

14、7.2 7.2 坐标方法的简单应用坐标方法的简单应用 第第 1 1 课时课时 用坐标表示地理位置用坐标表示地理位置 基础训练基础训练 知识点知识点 1 用坐标表示地理位置用坐标表示地理位置 1.如图,正五边形 ABCDE 放入某平面直角坐标系后,若顶点 A,B,C,D 的 坐标分别是(0,a),(-3,2),(b,m),(c,m),则点 E 的坐标是( ) A.(2,-3) B.(2,3) C.(3,2) D.(3,-2) 2.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子 “炮”的坐标为( )21 教育网 A.(3,2) B.(3,1) C.(2,2) D.(-2,2) 3.如图是杭州西湖的部分示意图,如以过“曲院风荷”,“中。

15、3.13.1 函数的概念与性质函数的概念与性质 3 3. .1.11.1 函数及其表示方法函数及其表示方法 第第 1 1 课时课时 函数的概念函数的概念 学习目标 1.在初中用变量之间的依赖关系描述函数的基础上, 用集合语言和对应关系刻画 函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成 函数的要素,能求简单函数的定义域和值域. 知识点一 函数的有关概念 。

16、1集合的含义与表示第1课时集合的含义学习目标1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题.3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一元素与集合的概念1.集合:一般地,指定的某些对象的全体称为集合.集合常用大写字母A,B,C,D,标记.2.元素:集合中的每个对象叫作这个集合的元素.常用小写字母a,b,c,d,表示集合中的元素.知识点二元素与集合的关系元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为、.知识点三元素的三个特性元素的三个特性是指确定性、互异性。

17、1.2.2 函数的表示法第 1 课时 函数的表示法课时目标 1.掌握函数的三种表示方法解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数函数的三种表示法(1)解析法用_表示两个变量之间的对应关系;(2)图象法用_表示两个变量之间的对应关系;(3)列表法列出_来表示两个变量之间的对应关系一、选择题1一个面积为 100 cm2 的等腰梯形,上底长为 x cm,下底长为上底长的 3 倍,则把它的高 y 表示成 x 的函数为( )Ay50x(x0) By100x(x0)Cy (x0) Dy (x0)50x 100x2一水池有 2 个进水口,1 个出水口,进出水速度如图甲、乙所示。

18、第2课时表示集合的方法学习目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.3.能记住各类区间的含义及其符号,会用区间表示集合知识链接1质数又称素数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数(不包括0)整除的数2函数yx22x1的图象与x轴有2个交点,函数yx22x1的图象与x轴有1个交点,函数yx2x1的图象与x轴没有交点预习导引1列举法(1)把集合中的元素一个一个地写出来表示集合的方法,叫作列举法(2)用列举法表示集合,通用的格式是在一个大括号里写出每个元素的名字,。

19、第第 2 2 课时课时 集合的表示方法集合的表示方法 学习目标 1.掌握集合的两种表示方法 2.了解集合的两种表示方法的适用情况,并能在两种 表示法中作出选择和转换.3.掌握区间的概念及表示方法 知识点一 列举法 把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集 合的方法称为列举法 注意:(1)元素与元素之间必须用“,”隔开; (2)集合中的元素必须是明确的; 。

20、第第 2 2 课时课时 函数的表示方法函数的表示方法 学习目标 1.了解函数的三种表示法及各自的优缺点, 会根据不同需要选择恰当的方法表示 函数.2.掌握求函数解析式的常用方法.3.会作函数的图像并从图像上获取有用信息 知识点 函数的表示方法 思考 函数三种表示法的优缺点各有哪些? 答案 1任何一个函数都可以用解析法表示( ) 2任何一个函数都可以用图像法表示( ) 3函数 f(x)2x1。

【5.2第1课时函数的表示方法 】相关DOC文档
标签 > 5.2第1课时函数的表示方法 学案含答案[编号:145110]