29.3第2课时切线的判定 同步分层训练含答案

第2课时二次函数y=a(x-h)2与y=a(x-h)2+k的图像和性质 知识点 1二次函数y=ax2+k的图像和性质 1.二次函数y=x2-1的图像是一条,它的开口方向,对称轴是,顶点坐标是,当x=时,函数y取得最值,可见函数y=x2-1的图像是由函数y=x2的图像向平移个单位长度得到的. 2.20

29.3第2课时切线的判定 同步分层训练含答案Tag内容描述:

1、第2课时二次函数y=a(x-h)2与y=a(x-h)2+k的图像和性质知识点 1二次函数y=ax2+k的图像和性质1.二次函数y=x2-1的图像是一条,它的开口方向,对称轴是,顶点坐标是,当x=时,函数y取得最值,可见函数y=x2-1的图像是由函数y=x2的图像向平移个单位长度得到的.2.2018淮安 将二次函数y=x2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是.3.抛物线y=ax2+c的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同,则a,c的值分别为()A.-12,-2 B.-12,2C.12,2 D.12,-24.关于二次函数y=-2x2+3,下列说法中正确的是()A.图像的开口向上B.当x-1时,y随。

2、第2课时用逼近法求一元二次方程的近似根知识点 1用图像求一元二次方程的近似根1.抛物线y=x2-2x+0.5如图5-4-5所示,利用图像可得方程x2-2x+0.5=0的近似根(精确到0.1)为 ()图5-4-5A.1.7或0.3 B.1.6或0.4C.1.5或0.5 D.1.8或0.22.已知二次函数y=ax2+bx+c的图像的顶点坐标为(-1,-3.2),部分图像如图5-4-6,由图像可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x11.3和x2()图5-4-6A.-1.3 B.-2.3 C.-0.3 D.-3.33.图5-4-7是二次函数y=ax2+bx-c的部分图像,由图像可知关于x的一元二次方程ax2+bx=c的两个根可能是.(精确到0.1)图5-4-7知识点 2用表格求。

3、第2课时相似三角形的高、中线、角平分线的性质知识点相似三角形对应线段的比1.已知ABCDEF,BAC,EDF的平分线的长度之比为12,则ABC与DEF的相似比为()A.12 B.14 C.21 D.412.若ABCDEF,相似比为32,则对应边上高的比为()A.32 B.35 C.94 D.493.若ABCDEF,且对应中线的比为23,则ABC与DEF的面积比为()A.32 B.23C.49 D.9164.如图6-5-5所示,ABCABC,AB=3a cm,AB=2a cm,AD与AD分别是ABC和ABC的中线,AD与AD的长度之和为15 cm,求AD和AD的长.图。

4、第5课时二次函数y=ax2+bx+c的图像和性质知识点 1二次函数y=ax2+bx+c的顶点式1.2018山西 用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A.y=(x-4)2+7 B.y=(x-4)2-25C.y=(x+4)2+7 D.y=(x+4)2-252.2017姜堰区月考 把二次函数y=(x-2)2+1化为y=x2+bx+c的形式,其中b,c为常数,则b+c=.3.若抛物线y=2x2+bx+3的对称轴是直线x=-1,则b=.知识点 2二次函数y=ax2+bx+c的图像和性质4.写出抛物线y=x2-2x-2的性质:开口方向为,对称轴为,顶点坐标是,在对称轴左侧,y随x的增大而,当x=时,函数取得最值为.5.抛物线y=x2-4x-3的顶点坐标为()A.(2,-7) B.(2,7)。

5、第3课时二次函数y=ax2+bx+c的图像和性质知识点 1将二次函数的一般式y=ax2+bx+c配方成顶点式1.将二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是()A.y=(x-1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+42.已知二次函数y=0.5x2-x-0.5,求其顶点坐标.小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的几个步骤中开始出现错误的是第几步,请写出此题正确的求解过程.小明的计算过程:解:y=0.5x2-x-0.5=x2-2x-1=x2-2x+1-1-1=(x-1)2-2,顶点坐标是(1,-2).知识点2二次函数y=ax2+bx+c的图像和性质3.关于抛物线y=x2-2x+1,下列说法错误的是。

6、第2课时利用二次函数求实际问题中的最值知识点 1面积的最值1.已知一个直角三角形的两直角边长之和为20 cm,设一条直角边长为x cm,则另一条直角边长为 cm,则这个直角三角形的面积S=cm2,当x= cm时,这个直角三角形的面积最大,为 cm2.2.如图30-4-11,在ABC中,C=90,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形PABQ的面积的最小值为()图30-4-11A.19 cm2 B.16 cm2C.12 cm2 D.15 cm23.教材习题A组第1题变式 某中学课外兴趣活动小组准备围。

7、30.2第1课时二次函数y=ax2的图像和性质知识点二次函数y=ax2的图像和性质命题角度1二次函数y=ax2的图像1.(1)函数y=5x2的图像的开口向,对称轴是,顶点坐标是.(2)函数y=-14x2的图像的开口向,对称轴是,顶点坐标是.2.二次函数y=(k+1)x2的图像如图30-2-1所示,则k的取值范围为.图30-2-13.指出下列抛物线的开口方向、对称轴及顶点坐标.抛物线y=3x2y=-4x2y=34x2y=-13x2开口方向对称轴顶点坐标4.已知二次函数y=12x2.(1)根据下表给出的x值,求出对应的y值后填写在表中;x-3-2-10123y=12x21292(2)在给出的平面直角坐标系(如图30-2-2)中画出函数y=12x2的图。

8、5.2第1课时二次函数y=ax2的图像和性质知识点 1二次函数y=ax2的图像的画法1.教材“操作与思考”变式 用描点法画出二次函数y=2x2的图像.解:(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值.x-2-1012y(2)描点:以表中各对x,y的值作为点的,在图5-2-1的平面直角坐标系中描出对应的点.(3)连线:用平滑的顺次连接所描出的各点.图5-2-12.下列图像中,是二次函数y=x2的图像的是()图5-2-2知识点 2二次函数y=ax2的图像和性质3.教材练习第2题变式 二次函数y=-3x2的图像的开口方向为,顶点坐标是,对称轴是,当x0时,y随x的增大而;当x=时,y有最值是.4.下。

9、第2课时二次函数y=ax2+k的图像和性质知识点 1二次函数y=ax2+k与y=ax2的图像关系1.将抛物线y=x2向上平移2个单位长度后所得的抛物线的函数表达式为()A.y=x2+2 B.y=x2-2C.y=(x+2)2 D.y=(x-2)22.教材练习第1题变式 如果将抛物线y=x2+2向下平移1个单位长度,那么所得新抛物线的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+33.抛物线y=3x2-5可以看成是由抛物线y=3x2向平移个单位长度得到的.4.将抛物线y=ax2+c向下平移7个单位长度,得到抛物线y=-2x2,则a=,c=.知识点 2二次函数y=ax2+k的图像和性质5.写出下列抛物线的开口方向、对称轴。

10、第2课时较复杂立体图形的三视图知识点 1棱柱的三视图1.一个几何体如图32-2-11所示,则该几何体的三视图正确的是()图32-2-11 图32-2-12知识点 2简单组合体的三视图2.2019本溪 如图32-2-13所示,该几何体的左视图是()A B C D图32-2-13 图32-2-143.画出如图32-2-15所示几何体的主视图、左视图和俯视图.图32-2-154.按要求完成下列视图问题.(1)如图32-2-16,它是由6个同样大小的正方体摆成的几何体.将正方体(1)移走后,新几何体的三视图与原几何体的三视图相比,视图没有发生改变;(2)如图32-2-16,请你借助图中的虚线网格画出该几何体的俯视图;(3)如。

11、第2课时与圆有关的问题知识点与圆有关的问题1.如图7-6-12,直线AB与O相切于点A,O的半径为2,若OBA=30,则OB的长为()图7-6-12A.43 B.4 C.23 D.22.某资料曾记载一种计算地球与月球之间距离的方法,如图7-6-13,假设赤道上有一点C,ACB=90,可以测量A的度数,则AB的长为()图7-6-13A.ACcosA B.ACcosAC.ACsinA D.ACsinA3.小李到公园游玩时去坐大型摩天轮,摩天轮的半径为20 m,匀速转动一周需要12 min,小李乘坐最底部的车厢(离地面1 m),经过2 min后到达点Q(如图7-6-14所示),则此时他离地面的高度是()图7-6-14A.10 m B.11 mC.2 m D.(2+1)m4.如图7-6-15,某。

12、第2课时正弦、余弦值的求法知识点 1正弦、余弦值的求法1.已知RtABC中,C=90,BC=3,AB=5,那么sinA的值是()A.35 B.34 C.45 D.432.2018衢州 如图7-2-12所示,AB是圆锥的母线,BC为底面直径,已知BC=6 cm,圆锥的侧面积为15 cm2,则sinABC的值为()图7-2-12A.34 B.35 C.45 D.533.2017常州模拟 已知在RtABC中,C=90,tanB=43,则cosA=.4.如图7-2-13,在RtABC中,C=90,BC=5,AB=13,求A的三个三角函数值.图7-2-135.如图7-2-14,在RtABC中,C=90,tanA=12,求B的正弦值与余弦值.图7-2-14知识点 2利用正弦、余弦求边长6.在RtABC中,C=90°。

13、29.3第1课时切线的性质知识点切线的性质1.如图29-3-1,已知PA切O于点A,O的半径为3,OP=5,则PA的长为()A.34 B.8 C.4 D.2图29-3-1 图29-3-22.如图29-3-2,在ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为()A.2.3 B.2.4 C.2.5 D.2.63.2019重庆A卷 如图29-3-3,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连接OD.若C=50,则AOD的度数为()A.40 B.50 C.80 D.100。

14、第2课时切线的判定知识点切线的判定1.如图29-3-15,直线l上有A,B,C,D四点,以点P为圆心,分别以线段PA,PB,PC,PD的长为半径作圆,所得的圆与直线l相切的是()A.以PA的长为半径的圆B.以PB的长为半径的圆C.以PC的长为半径的圆D.以PD的长为半径的圆2.矩形的两邻边长分别为2.5和5,若以较长一边为直径作圆,则矩形与圆相切的边共有()A.4条 B.3条C.2条 D.1条3.在ABO中,OA=OB=2 cm,O的半径为1 cm,当AOB=时,直线AB与O相切.图29-3-15 图29-3-164.如图29-3-16,A,B是O上的两点,AC是过点A的一条直线.如果AOB=120,那么当CAB的度数为时,AC才能成为O的切线.5.如。

【29.3第2课时切线的判定 同】相关DOC文档
标签 > 29.3第2课时切线的判定 同步分层训练含答案[编号:104068]