数学 必修一

1.3中国古代数学中的算法案例第一章算法初步学习目标1.理解辗转相除法与更相减损术中的数学原理,并能根据这些原理进行算法分析.2.理解割圆术中蕴含的数学原理.3.了解秦九韶算法及利用2.1.1简单随机抽样第二章2.1随机抽样学习目标1.体会随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.

数学 必修一Tag内容描述:

1、第一章 统计,8 最小二乘估计,学习目标 1.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立线性回归方程. 2.理解回归直线与观测数据的关系,能用线性回归方程进行估计和预测.,题型探究,问题导学,内容索引,当堂训练,问题导学,具有线性相关关系的散点大致分布在一条直线附近.如何确定这条直线比较合理?,思考,知识点一 最小二乘法,答案,应该使散点整体上最接近这条直线.最小二乘法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离 y1(abx1)2y2(abx2)2yn(abxn)2最小.,数学上的“回归”是什么意。

2、第三章 不等式,1.2 不等关系与不等式(一),1.实数比较大小的方法. 2.通过解决具体问题,培养严谨的思维习惯.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 作差法比较两个实数大小的原理,因为2x与x21两个式子都在变化,谁大谁小不容易确定.而x212x(x1)20,大小关系容易确定.,答案,2x与x21谁大谁小容易确定吗?x212x与0的大小关系呢?,梳理,一般地,可以通过比较ab与0的大小来比较a与b的大小,其原理是:abab0,abab0,ab,bc,则ac.,有同学借助一个中间量:x1b,那么acb。

3、第三章 不等式,1.2 不等关系与不等式(二),1.掌握不等式性质推导及应用. 2.通过解决具体问题,培养严谨的思维习惯.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 不等式的性质,不能.如12,24,但(1)(2)b,cd能推出acbd吗?,梳理,一般地,不等式有下列性质,但要注意其成立条件: (1)对称性:abbb,bca c; (3)可加性:abac bc;ab,cdac bd; (4)可乘性:ab,c0ac bc; ab0,cd0ac bd; (5)可乘方:ab0an bn(nN); (6)可开方:ab0 (nN).,知识点。

4、第一章 数列,1.3.1 等比数列(一),1.通过实例,理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的概念,观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,答案,从第2项起,每项与它的前一项的比是同一个常数.,1,1,1,1,; 1,1,1,1,.,梳理,等比数列的概念和特点. (1)如果一个数列从第 项起,每一项与它的前一项的 都等于 常数,那么这个数列叫作等比数列,这个常数叫作等比数列的 ,通常。

5、第一章 数列,1.3.1 等比数列(二),1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形:ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,答案,设等比数列an的首项为a1,公比为q. 则ana1qn1 qn,其形式类似于指数。

6、第一章 数列,1.2.1 等差数列(一),1.理解等差数列的定义. 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列的概念,给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?,答案,从第2项起,每项与它的前一项的差是同一个常数.,梳理,从第 项起,每一项与前一项的差等于同一个 ,这个数列称为等差数列,这个常数为等差数列的 ,公差通常用。

7、第一章 数列,1.2.1 等差数列(二),1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质解决有关问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等差数列通项公式的推广,已知等差数列an的首项a1和公差d能表示出通项ana1(n1)d,如果已知第m项am和公差d,又如何表示通项an?,答案,设等差数列的首项为a1,则ama1(m1)d, 变形得a1am(m1)d, 则ana1(n1)dam(m1)d(n1)d am(nm)d.,思考2,由思考1可得d ,d ,你能联系直线的斜率解释一下这两个式子的几何意义吗?,答案,等差数列通项公式可变形为andn。

8、第一章 数列,1.1.2 数列的函数特性,1.理解数列的几种表示方法. 2.能从函数的观点研究数列.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 数列的表示方法,以数列2,4,6,8,10,12,为例,你能用几种方法表示这个数列?,答案,对数列2,4,6,8,10,12,可用以下几种方法表示: 通项公式法:an2n.递推公式法:,列表法:,图像法:,梳理,数列的表示方法有 法、 法、列表法、递推公式法.,通项公式,图像,知识点二 数列的增减性,图像上升,an随n增大而增大.,思考,答案,观察知识点一中数列2,4,6,8,的图像,随着n的增大,an有什。

9、第一章 数列,1.1.1 数列的概念,1.理解数列及其有关概念. 2.理解数列的通项公式,并会用通项公式写出数列的任意一项. 3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,不是.顺序不一样.,思考1,知识点一 数列及其有关概念,答案,数列1,2,3与数列3,2,1是同一个数列吗?,思考2,数列的记法和集合有些相似,那么数列与集合的区别在哪儿?,答案,数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.,梳理,(1)按 排列的 叫作数列,数。

10、章末复习课,第一章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握三角函数诱导公式. 3.能画出ysin x,ycos x,ytan x的图像. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图像的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ; (3) 叫做的 ,记作 ,即 .,tan ,正弦,sin ,sin y,余弦,cos ,cos x,正切,2.诱导公。

11、第一章 1.1 算法与程序框图,1.1.1 算法的概念,学习目标 1.了解算法的含义. 2.了解算法的思想. 3.会用自然语言描述一些具体问题的算法,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 算法的概念,有一碗酱油,一碗醋和一个空碗现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法,先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换,答案,思考2,某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步第一步:把冰箱门打开;第二步:把大象装进去;第三步:。

12、章末复习课,第二章 统 计,学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据. 2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体. 3.能利用散点图对两个变量是否相关进行初步判断,能用回归直线方程进行预测,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 抽样方法,1.当总体容量较小,样本容量也较小时,可采用 . 2.当总体容量较大,样本容量较小时,可用 . 3.当总体容量较大,样本容量也较大时,可用 . 4.当总体由差异明显的几部分组成时,可用 .,抽签法,随机数法,系统抽样法,分层抽样法,知识。

13、第一章 数列,章末复习课,1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.提高解决等差数列、等比数列问题的能力,培养综合运用知识解决问题的能力.,学习目标,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 知识网络,知识点二 对比归纳等差数列和等比数列的基本概念和公式,知识点三 本章公式推导和解题过程中用到的基本方法和思想,1.在求等差数列和等比数列的通项公式时,分别用到了 法和 法; 2.在求等差数列和等比数列的前n项和时,分别用到了 法和 法. 3.等差数列和等比数列各自都涉及5个量,已知其中任意 个求。

14、章末复习,第一章 数 列,学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.提高解决等差数列、等比数列问题的能力. 3.依托等差数列、等比数列解决一般数列的常见通项、求和等问题,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.等差数列和等比数列的基本概念与公式,2.数列中的基本方法和思想 (1)在求等差数列和等比数列的通项公式时,分别用到了 法和 法; (2)在求等差数列和等比数列的前n项和时,分别用到了 法和_法; (3)等差数列和等比数列各自都涉及5个量,已知其中任意 个求其余_ 个,用到了方程思想; (4)在。

15、4.3 简单线性规划的应用,第三章 不等式,学习目标 1.体会用线性规划的方法解决实际问题的过程. 2.了解整数点最优解的求法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 线性规划在实际中的应用,思考 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:,为使一年的种植总利润(总利润总销售收入总种植成本)最大,应怎样安排生产. 在这一问题中,种植成本和种植总利润与哪些变量有关?如何用这些变量表示种植成本和总利润?,答案,答案 种植成本和总利润都与黄瓜。

16、3 解三角形的实际应用举例,第二章 解三角形,学习目标 1.准确理解仰角、俯角、方向角等概念. 2.掌握一些常见问题的测量方案. 3.培养把实际问题抽象为数学问题的能力,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 常用角,思考 试画出“北偏东60”和“南偏西45”的示意图,答案,答案,梳理 在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空: (1)方向角 指北或指南方向线与目标方向所成的小于 度的角 (2)仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线 时叫仰角,目标视线在水平。

17、2 三角形中的几何计算,第二章 解三角形,学习目标 1.能够运用正弦定理、余弦定理处理三角形中的计算问题. 2.能够运用正弦定理、余弦定理进行平面几何中的推理与证明,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 平面图形中的计算问题,答案,答案 画出图形(如右图); 理清已知条件,要求的目标; 根据条件目标寻求通过解三角形凑齐缺失条件,梳理 对于平面图形的长度、角度、面积等计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运。

18、1.1 正弦定理,第二章 1 正弦定理与余弦定理,学习目标 1.掌握正弦定理的内容及其证明方法. 2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题. 3.掌握用两边夹角求三角形面积.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 正弦定理,答案,答案,特别提醒:正弦定理的特点 (1)适用范围:正弦定理对任意的三角形都成立; (2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式; (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.,知识点二 用两边夹角表示的三角。

19、2.1.1 简单随机抽样,第二章 2.1 随机抽样,学习目标 1.体会随机抽样的必要性和重要性. 2.理解随机抽样的目的和基本要求. 3.掌握简单随机抽样中的抽签法、随机数法的一般步骤.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 统计的基本概念,样本容量有单位吗?,没有.,答案,思考2,从高二(2)班60名学生中,抽取8名学生,调查视力状况.其中样本为“8名学生”,对否?,不对,样本应为“8名学生的视力状况”.,答案,1.总体:一般把所考察对象的某一数值指标的 构成的集合看作总体. 2.个体:构成总体的每一个元素作为个体. 3.样本。

20、1.3 中国古代数学中的算法案例,第一章 算法初步,学习目标 1.理解辗转相除法与更相减损术中的数学原理,并能根据这些原理进行算法分析. 2.理解割圆术中蕴含的数学原理. 3.了解秦九韶算法及利用它提高计算效率的本质. 4.对简单的案例能设计程序框图并写出算法程序.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 更相减损术,更相减损术的运算步骤 第一步,任意给定两个正整数,判断它们是否都是 .若是,用 约简;若不是,执行 . 第二步,以 的数减去 的数,接着把所得的差与 的数比较,并以大数减小数,继续这个操作,直到所得的。

【数学 必修一】相关PPT文档
标签 > 数学 必修一[编号:17347]