北师大版高中数学必修三课件:1.8 最小二乘估计

上传人:可** 文档编号:55928 上传时间:2019-04-10 格式:PPTX 页数:31 大小:1.34MB
下载 相关 举报
北师大版高中数学必修三课件:1.8 最小二乘估计_第1页
第1页 / 共31页
北师大版高中数学必修三课件:1.8 最小二乘估计_第2页
第2页 / 共31页
北师大版高中数学必修三课件:1.8 最小二乘估计_第3页
第3页 / 共31页
北师大版高中数学必修三课件:1.8 最小二乘估计_第4页
第4页 / 共31页
北师大版高中数学必修三课件:1.8 最小二乘估计_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、第一章 统计,8 最小二乘估计,学习目标 1.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立线性回归方程. 2.理解回归直线与观测数据的关系,能用线性回归方程进行估计和预测.,题型探究,问题导学,内容索引,当堂训练,问题导学,具有线性相关关系的散点大致分布在一条直线附近.如何确定这条直线比较合理?,思考,知识点一 最小二乘法,答案,应该使散点整体上最接近这条直线.最小二乘法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离 y1(abx1)2y2(abx2)2yn(abxn)2最小.,数学上的“回归”是什么意思?,思考,知识点二 线性回归方程,答案,“

2、回归”一词最早由英国统计学家(Francils Galton)提出的,本意是子女的身高会向一般人的均值靠拢.现在这个概念引伸到随机变量有向回归线集中的趋势.,梳理 用最小二乘法得到的直线方程称为 ,a,b是线性回归方程的系数.,线性回归方程,题型探究,例1 下表为某地近几年机动车辆数与交通事故数的统计资料.(1)请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果不具有线性相关关系,请说明理由;,类型一 线性回归方程的求法,解答,在平面直角坐标系中画出数据的散点图,如图.直观判断散点在一条直线附近,故具有线性相关关系.,(2)如果具有线性相关关系,求出线性回归方程.,解答,将它们代入公式

3、计算得b0.077 4,a1.024 9, 所以,所求线性回归方程为y0.077 4x1.024 9.,即使散点图呈饼状,也可利用公式求出线性回归方程,但这种方程显然没什么价值.故应先画出散点图,看是否呈直线形,再求方程.,反思与感悟,跟踪训练1 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;,解答,数据对应的散点图如图所示:,(2)求线性回归方程,并在散点图中加上回归直线.,解答,故所求线性回归方程为y0.196 2x1.814 2. 回归直线如(1)中图所示.,类型二 线性回归方程的应用,例2 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影

4、响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:(1)画出散点图;,解答,散点图如图所示:,(2)从散点图中发现气温与热饮销售杯数之间有什么关系;,解答,从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.,(3)求线性回归方程;,解答,从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式求出线性回归方程的系数.利用计算器容易求得线性回归方程为y2.352x147.767.,(4)如果某天的气温是2,预测这天卖出的热饮杯数;,解答,当x2时,y143.063.因此,某天的气温为2时,这天大约可以卖出143杯

5、热饮.,(5) 气温为2时,小卖部一定能够卖出143杯左右热饮吗?为什么?,解答,小卖部不一定能够卖出143杯左右热饮,原因如下:线性回归方程中的截距和斜率都是通过样本估计出来的,存在误差,这种误差可以导致预测结果的偏差. 即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x的预报值,能够与实际值y很接近.我们不能保证点(x,y)落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近.,线性回归方程主要用于预测,但这种预测类似于天气预报,不一定与实际数据完全吻合.,反思与感悟,跟踪训练2 有人统计了同一个省的6个城市某一年的人均国民生产总值(即人均GDP)和这一年各城市患白血病的儿

6、童数,如下表:(1)画出散点图,并判定这两个变量是否具有线性相关关系;,解答,散点图如下:根据散点图可以看出,在6个点中,虽然第一个点离这条直线较远,但其余5个点大致分布在这条直线的附近,所以这两个变量具有线性相关关系.,(2)通过计算可知这两个变量的线性回归方程为y23.25x102.15,假如一个城市的人均GDP为12万元,那么可以断言,这个城市患白血病的儿童一定超过380人,请问这个断言是否正确?,解答,断言是错误的,将x12代入y23.25x102.15得y23.2512102.15381.15380,但381.15是对该城市人均GDP为12万元的情况下所作的一个估计,该城市患白血病的

7、儿童可能超过380人,也可能低于380人.,当堂训练,1.下列有关线性回归的说法,不正确的是 A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系 B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫作散点图 C.线性回归方程最能代表观测值x、y之间的线性关系 D.任何一组观测值都能得到具有代表意义的线性回归方程,答案,2,3,4,1,回归直线必过样本点的中心.,2.已知回归直线的斜率的估计值是1.23,样本点中心 为(4,5), A.y1.23x4 B.y1.23x5 C.y1.23x0.08 D.y0.08x1.23,答案,2,3,

8、4,1,解析,3.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得线性回归方程ybxa中的b为9.4,据此模型预报广告费用为6万元时销售额为 A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元,2,3,4,1,答案,解析,4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的线性回归方程为y0.85x85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心 C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg D.若该大学某女

9、生身高为170 cm,则可判定其体重必为58.79 kg,答案,2,3,4,1,解析,当x170时,y0.8517085.7158.79,体重的估计值为58.79 kg.,1.求线性回归方程时应注意的问题 (1)知道x与y成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的. (2)用公式计算a、b的值时,要先计算b,然后才能算出a. 2.利用线性回归方程,我们可以进行估计和预测.若线性回归方程为ybxa,则xx0处的估计值为y0bx0a.,规律与方法,本课结束,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 北师大版 > 必修3