人教A版高中数学必修四1.1.2 弧度制课件

2.5.2 向量在物理中的应用举例,第二章 2.5 平面向量应用举例,学习目标 1.经历用向量方法解决某些简单的力学问题与其他一些实际问题的过程. 2.体会向量是一种处理物理问题的重要工具. 3.培养运用向量知识解决物理问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 向量的

人教A版高中数学必修四1.1.2 弧度制课件Tag内容描述:

1、2.5.2 向量在物理中的应用举例,第二章 2.5 平面向量应用举例,学习目标 1.经历用向量方法解决某些简单的力学问题与其他一些实际问题的过程. 2.体会向量是一种处理物理问题的重要工具. 3.培养运用向量知识解决物理问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 向量的线性运算在物理中的应用,思考1,向量与力有什么相同点和不同点?,答案,答案 向量是既有大小又有方向的量,它们可以有共同的作用点,也可以没有共同的作用点,但是力却是既有大小,又有方向且作用于同一作用点的.,思考2,向量的运算与速度、加速度与位移。

2、1.4.3 正切函数的性质与图象,第一章 1.4 三角函数的图象与性质,学习目标 1.会求正切函数ytan(x)的周期. 2.掌握正切函数ytan x的奇偶性,并会判断简单三角函数的奇偶性. 3.掌握正切函数的单调性,并掌握其图象的画法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 正切函数的性质,正切函数的定义域是什么?,答案,答案 x|xR且x k,kZ.,思考2,诱导公式tan(x)tan x,xR且x k,kZ说明了正切函数的什么性质?,答案 周期性.,思考3,诱导公式tan(x)tan x,xR且x k,kZ说明了正切函数的什么性质?,答案,答案 奇偶性.,思考4,从正切。

3、1.4.2 正弦函数、余弦函数的性质(二),第一章 1.4 三角函数的图象与性质,学习目标 1.掌握ysin x,ycos x的最大值与最小值,并会求简单三角函数的值域和最值. 2.掌握ysin x,ycos x的单调性,并能利用单调性比较大小. 3.会求函数yAsin(x)及yAcos(x)的单调区间.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 正弦、余弦函数的定义域、值域,观察下图中的正弦曲线和余弦曲线. 正弦曲线:余弦曲线:,可得如下性质: 由正弦、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集R,值域都是 . 对于正弦函数ysin x,xR有:当且仅。

4、1.1.2 四种命题 1.1.3 四种命题间的相互关系,第一章 1.1 命题及其关系,学习目标 1.了解命题的原命题、逆命题、否命题与逆否命题. 2.理解四种命题之间的关系,会利用互为逆否命题的等价关系判断命题的真假.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 四种命题的概念,答案 命题(1)的条件和结论与命题(2)的条件和结论恰好互换了. 命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定. 命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.,思考 分析下列四个命题,请指出命题(1)的条件和结论分别与其它三个命题的条。

5、第2课时 旋转体与简单组合体的结构特征,第一章 1.1 空间几何体的结构,学习目标 1.了解圆柱、圆锥、圆台、球的定义. 2.掌握圆柱、圆锥、圆台、球的结构特征. 3.了解简单组合体的概念及结构特征.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 圆 柱,思考 圆柱是比较常见的一类旋转体,那么,它是怎样形成的?,答案 以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的几何体.,梳理,旋转轴,矩形的一边,垂直于轴,平行于轴,不垂直于轴,知识点二 圆 锥,一条直角边,知识点三 圆 台,垂直于底边的腰,平行于圆锥底面,底面和截面。

6、2.3.1 平面向量基本定理,第二章 2.3 平面向量的基本定理及坐标表示,学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义. 2.在平面内,当一组基底选定后,会用这组基底来表示其他向量. 3.会应用平面向量基本定理解决有关平面向量的综合问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 平面向量基本定理,思考1,如果e1,e2是两个不共线的确定向量,那么与e1,e2在同一平面内的任一向量a能否用e1,e2表示?依据是什么?,答案 能.依据是数乘向量和平行四边形法则.,答案,思考2,如果e1,e2是共线向量,那么向量a能。

7、第1课时 程序框图、顺序结构,第一章 1.1.2 程序框图与算法的基本逻辑结构,学习目标 1.了解各种程序框及流程线的功能与作用. 2.能够读懂简单的程序框图. 3.能够用程序框图表示顺序结构的算法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 程序框图,思考 许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好? 答案 使用流程图好.因为使用流程图表达更直观准确.,梳理 (1)程序框图的基本构成,其中程序框图中的图框表示各种操作,图框内的文字和符号表示操作的内容,带箭头的流程线。

8、1.1.1 任意角,第一章 1.1 任意角和弧度制,学习目标 1.了解角的概念. 2.掌握正角、负角和零角的概念,理解任意角的意义. 3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 角的相关概念,用旋转方式定义角时,角的构成要素有哪些?,答案,答案 角的构成要素有始边、顶点、终边.,思考2,将射线OA绕着点O旋转到OB位置,有几种旋转方向?,答案 有顺时针和逆时针两种旋转方向.,思考3,如果一个角的始边与终边重合,那么这个角一定是零角吗?,答案,答案 不一定,若角的。

9、1.1.2 集合间的基本关系,第一章 1.1 集合,学习目标 1.理解子集、真子集、空集的概念. 2.能用符号和Venn图表达集合间的关系. 3.掌握列举有限集的所有子集的方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 子集,如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?,答案,答案 所有的白马都是马,马不一定是白马.,对于两个集合A,B,如果集合A中 元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作 (或 ),读作“ ”(或“ ”). 子集的有关性质: (1)任何一个集合是它。

10、1.1.2 四种命题 1.1.3 四种命题间的相互关系,学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题. 2.认识四种命题之间的关系以及真假性之间的联系. 3.会利用命题的等价性解决问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 四种命题的概念,初中已学过命题与逆命题的知识,什么叫做命题的逆命题?,在两个命题中,如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题.,答案,思考2,除了命题与逆命题之外,是否还有其它形式的命题?,。

11、第一章 1.1 正弦定理和余弦定理,1.1.1 正弦定理(二),1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题. 2.能根据条件,判断三角形解的个数. 3.能利用正弦定理、三角变换解决较为复杂的三角形问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 正弦定理的常见变形,abc,2R,2Rsin A,2Rsin B,2Rsin C,4.sin A ,sin B ,sin C .,知识点二 判断三角形解的个数,思考1,答案,在ABC中,a9,b10,A60,判断三角形解的个数.,故对应的钝角B有90b,则有AB,所。

12、1.1.2 集合的表示方法,第一章 1.1 集合与集合的表示方法,学习目标 1.掌握用列举法表示有限集. 2.理解描述法格式及其适用情形. 3.学会在不同的集合表示法中作出选择和转换.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 列举法,要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?,答案,答案 把它们一一列举出来.,如果一个集合是 ,元素又不太多,常常把集合的所有元素都 出来,写在花括号“ ”内表示这个集合,这种表示集合的方法叫做列举法.,梳理,有限集,列举,思考,。

13、第一章 1.1 正弦定理和余弦定理,1.1.2 余弦定理(二),1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形 状判断等问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 已知两边及其中一边的对角解三角形,思考,能在余弦定理b2a2c22accos B中,已知三个量ACb,ABc,cos B,代入后得到关于a的一元二次方程,解此方程即可,答案,梳理 已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法如下:,(1)。

14、第3课时 循环结构,第一章 1.1.2 程序框图与算法的基本逻辑结构,学习目标 1.掌握当型和直到型两种循环结构的程序框图的画法. 2.理解两种循环结构程序框图的执行功能,并能正确解题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 循环结构,1.循环结构的定义 在一些算法中,经常会出现从某处开始,按照一定的条件 某些步骤的情况,这就是循环结构.反复执行的步骤称为 . 2.循环结构的特点 (1)重复性:在一个循环结构中,总有一个过程要重复一系列的步骤若干次,而且每次的操作完全相同. (2)判断性:每个循环结构都包含一个判断条件。

15、第五章 三角函数 5.15.1 任意角和弧度制任意角和弧度制 5.1.25.1.2 弧度制弧度制 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.了解弧度制下,角的集合与实数集之间的一 一对应关系 2理解弧度的角。

16、第一章 1.1 正弦定理和余弦定理,11.2 余弦定理(一),1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法. 2.会运用余弦定理解决两类基本的解三角形问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 余弦定理的推导,根据勾股定理,若ABC中,C90,则c2a2b2a2b22abcos C 试验证式对等边三角形还成立吗?你有什么猜想?,答案,当abc时,C60, a2b22abcos Cc2c22cccos 60c2, 即式仍成立,据此猜想,对一般ABC,都有c2a2b22abcos C.,思考2,在c2a2b22abcos C中,abcos C能解释为哪两个向量的数量积?你能由此证明。

17、3 弧度制,第一章 三角函数,学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换. 2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 角度制与弧度制,在初中学过的角度制中,1度的角是如何规定的?,答案,答案 周角的 等于1度.,思考2,在弧度制中,1弧度的角是如何规定的,如何表示?,答案,答案 在单位圆中,长度为1的弧所对的圆心角称为1弧度角.,思考3,“1弧度的角”的大小和所在圆的半径大小有。

18、1.1.2 弧度制,第1章 1.1 任意角、弧度,学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换. 2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 角度制与弧度制,在初中学过的角度制中,1度的角是如何规定的?,答案 周角的 等于1度.,思考2,在弧度制中,1弧度的角是如何规定的,如何表示?,答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad表示.,答案,思考3,“1弧度的角。

19、1.1.2 弧度制和弧度制与角度制的换算,第一章 1.1 任意角的概念与弧度制,学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确地转换. 2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 角度制与弧度制,在初中几何研究过角的度量,当时是使用角度制来度量角的,那么1的角是如何规定的?,答案,答案 把圆周360等分,则其中1份所对的圆心角是1的角.,思考2,在弧度制中,1弧度的角是如何规定的?,答案 长。

20、1.1.2 弧度制,第一章 1.1 任意角和弧度制,学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换. 2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系. 3.掌握并能应用弧度制下的弧长公式和扇形面积公式.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 角度制与弧度制,在初中学过的角度制中,1度的角是如何规定的?,答案,答案 周角的 等于1度.,思考2,在弧度制中,1弧度的角是如何规定的,如何表示?,答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad表示.,思考3,“1弧度。

【人教A版高中数学必修四1.1.】相关PPT文档
北师大版高中数学必修四课件:1.3 弧度制
苏教版高中数学必修四课件:1.1.2 弧度制
标签 > 人教A版高中数学必修四1.1.2 弧度制课件[编号:145940]