第八单元垂线与平行线第8课时垂线与平行线(认识平行线)教学内容:教材第9294页。教学目标:1、让学生通过对具体生活场景的观察,让学生认识到平面上两条直线的位置关系。2、让学生通过动手压轴题压轴题::动点问题以及绝对值问题总结动点问题以及绝对值问题总结一、填空题一、填空题1.数轴上两点间的距离等于这
平行线角度问题压轴题Tag内容描述:
1、 1 一、单选题一、单选题 1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC 上一动点,则 ADCD的最小值是( ) A4 B3 C2 D2 【答案】A 【解析】 连接 CC,连接 AC 交l于点 D,连接 AD,此时 AD+CD 的值最小,如图所示 【关键点拨】本题考查了轴对称中的最短线路问题以及等边三角形的性质,找出点 C 关于 BC /对称的点是 A /是解题的关键. 2 2某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方 体最少有( ) A4 个 B5个 C6个 D7 个 【答案】B 【关键点。
2、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1414 最值问题最值问题 一、单选题一、单选题 1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC 上一动点,则 ADCD的最小值是( ) A4 B3 C2 D2 2某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方 体最少有( ) A4 个 B5个 C6个 D7 个 3跳台滑雪是冬季奥运会比赛项目之一运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起 跳后的竖直高度 (单位: )与水平距离 (单位: )近似满足函数关系。
3、 1 一、单选题一、单选题 1将全体正奇数排成一个三角形数阵 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 根据以上排列规律,数阵中第 25 行的第 20 个数是( ) A639 B637 C635 D633 【答案】A 【关键点拨】 考查归纳推理的应用,利用等差数列的通项公式是解决本题的关键 2按一定规律排列的一列数依次为:2,3,10,15,26,35,按此规律排列下去,则这列数中的第 100 个数是( ) A9999 B10000 C10001 D10002 【答案】A 2 【关键点拨】 本题考查了规律题数字的变化类,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另 外对平。
4、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 15 15 规律性问题规律性问题 一、单选题一、单选题 1将全体正奇数排成一个三角形数阵 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 根据以上排列规律,数阵中第 25 行的第 20 个数是( ) A639 B637 C635 D633 2按一定规律排列的一列数依次为:2,3,10,15,26,35,按此规律排列下去,则这列数中的第 100 个数是( ) A9999 B10000 C10001 D10002 3下列图形都是由同样大小的黑色正方形纸片组成,其中第个图中有 3 张黑色正方形纸片,第个图中 有 5张黑色正方形纸片,第个图中有 7 张黑色正方。
5、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 【答案】A 【解析】 作CHAB于H交O于E、F连接BC A(4,0) ,B(0,3) ,OA=4,OB=3,AB=5 SABC= ABCH=ACOB,ABCH=ACOB,5CH=(4+1)3,解得:CH=3,EH=31=2 当点P与E重合时,PAB的面积最小,最小值52=5 故选 A 【关键点拨】 本题考查了一次函数图象上的点的坐标特征、一次函数的性质。
6、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 2定义一种对正整数 n 的“F”运算:当 n 为奇数时,F(n)=3n+1;当 n 为偶数时,F(n)=(其 中 k 是使 F(n)为奇数的正整数),两种运算交替重复进行,例如,取 n=24,则: 若 n=13,则第 2018 次“F”运算的结果是( ) A1 B4 C2018 D4 2018 3如图,在ABC 中,AB=20cm,AC=12cm。
7、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 18 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 2 如图, 在平面直角坐标系中, 直线 l1: y=x+1 与 x 轴, y 轴分别交于点 A 和点 B, 直线 l2: y=kx (k0) 与直线 l1在第一象限交于点 C若BOC=BCO,则 k 的值为(。
8、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1818 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 【答案】D 【解析】 乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短 故选 D 【关键点拨】 本题考查了函数图象问题。
9、二次函数中考压轴题(定值问题)解析精选【例1】(2013南通)如图,直线y=kx+b(b0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设OCD的面积为S,且kS+32=0(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1OB+y2OA=0考点:二次函数综合题专题:压轴题分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到OCD的面积S=,再根据kS+32=0,及b0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2(16+8k2)y+64=0,然后由已知条件。
10、 九年级数学专项训练题二次函数学专项训练二次函数中考精品压轴题(四边形与存在性问题)解析精选【例1】综合与实践:如图,在平面直角坐标系中,抛物线y=x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点(1)求直线AC的解析式及BD两点的坐标;(2)点P是x轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点AP、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由(3)请在直线AC上找一点M,使BDM的周长最小,求出M点的坐标【答案。
11、专题六 重温高考压轴题-函数零点问题集锦函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力.【典型例题】。
12、专题六 重温高考压轴题-函数零点问题集锦函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力.【典型例题】。
13、专题 3 反比例函数问题例题精讲例 1.(北海中考)如图,反比例函数 y= (x0 )的图象交 RtOAB 的斜边 OA 于点 D,交直角边 ABkx于点 C,点 B 在 x 轴上若 OAC 的面积为 5,AD :OD=1:2,则 k 的值为_ 【解答】解:过 D 点作 x 轴的垂线交 x 轴于 E 点, ODE 的面积和OBC 的面积相等 = ,k2OAC 的面积为 5,OBA 的面积=5+ ,k2AD:OD=1:2,OD:OA=2 : 3,DEAB,ODEOAB, =( ) 2 , S ODES OAB23即 = ,k25+k249解得:k=8例 2.(临沂中考)如图,在平面直角坐标系中,点 A、B 均在函数 y (k0,x0)的图象上,Akx与 x 轴相切,B 与 y 。
14、专题 8 折叠问题例题精讲例 1.如图,平面直角坐标系 xOy 中,矩形 OABC 的边 OA、OC 分别落在 x、y 轴上,点 B 坐标为(6 ,4) ,反比例函数 y= 的图象与 AB 边交于点 D,与 BC 边交于点 E,连结 DE,将 BDE 沿 DE 翻折至BDE 处,点6B恰好落在正比例函数 y=kx 图象上,则 k 的值是( )A. B. C. D. -25 -121 -15 -124【答案】B 【解析】 【解答】矩形 OABC,CBx 轴,ABy 轴,点 B 坐标为( 6,4) ,D 的横坐标为 6,E 的纵坐标为 4,D,E 在反比例函数 y= 的图象上,6xD(6, 1) ,E( ,4) ,32BE=6 = , BD=41=3,32 92ED= = ,BE2+。
15、专题 5 新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率请你也用这个方法求出二次函数 y= 的图象与两坐标轴所围成的图形最接近的面积是( )14(x-4)2A. 5 B. C. 4 D. 174225【答案】 A 【解析】【解答】解:如图,设抛物线与坐标轴的交点为 A、B,则有:A(4 ,0 ),B(0,4);作直线 。
16、备考 2019 中考数学高频考点剖析 动态几何之最值问题考点扫描聚焦中考动态几何中的最值问题,是每年中考的必考内容之一,考查的知识点包括包括单动点形成的最值问题、双(多)动点形成的最值问题、线动形成的最值问题和面动形成的最值问题。四个方面,总体来看,难度系数中游水平,以选择填空为主。也有少量的解析题。解析题主要以几何图形的综合应用为主。结合 2017、2018 年全国各地中考的实例和 2019 年名校中考模拟试题,我们从四个方面进行动态几何中最值问题的探讨:(1)包括单动点形成的最值问题,(2)双(多)动点形成的最值问。
17、,多角度解决求总数的问题,课前导入,探究新知,课堂小结,课后作业,20以内进位加法,课堂练习,8,课前导入,一共有多少人?,知道了什么呢?,2,探究新知,男生有9人,女生有6人,后排有8人,前排有7人,用加法解答。,问题是求一共有多少人。,3,9 6 (人),15,把男生人数与女生人数加起来。,口答:一共有15人。,4,把前排人数与后排人数加起来。,解答正确吗?,数一数总人数正是15人。,口答:一共有15人。,8 7 (人),15,5,解答有什么不同呢?,把男、女生人数加起来。,把前、后排人数加起来。,但是总人数是相同的。,6,解决问题。,课堂练习, (个),6,+,9,15,把。
18、压轴题压轴题:动点问题以及绝对值问题总结动点问题以及绝对值问题总结 一、填空题一、填空题 1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点 A、B 在数轴上对应的数分别为 a、b, 则 A、B 两点间的距离表示为 AB|ab|. 根据以上知识解题: (1)数轴上表示 3 和 5 两点之间的距离是_,数轴上表示 2 和5 两点之间的距离是_. (2)。
19、第八单元 垂线与平行线第 8 课时 垂线与平行线(认识平行线)教学内容:教材第 9294 页。教学目标:1、让学生通过对具体生活场景的观察,让学生认识到平面上两条直线的位置关系。2、让学生通过动手操作进一步地认识平行线,学会画已知直线的平行线,学会用直尺和三角尺画平行线,培养一定的操作技能,发展空间观念。教学重难点:感知平面上两条直线的平行关系,借助三角尺、直尺等工具画平行线。教具准备:三角尺、直尺教学过程:一、结合生活、认识平行线1、认识相交与不相交 谈话:同学们,生活处处皆数学。下面这些设施里你能找出哪些。
20、 1 探究角度问题1如图,抛物线经过原点 O(0,0),与 x 轴交于点 A(3,0) ,与直线 l 交于点B(2, 2)(1)求抛物线的解析式;第 1 题图(2)点 C 是 x 轴正半轴上一动点,过点 C 作 y 轴的平行线交直线 l 于点 E,交抛物线于点 F,当 EF OE 时,请求出点 C 的坐标;(3)点 D 为抛物线的顶点,连接 OD,在抛物线上是否存在点 P,使得BOD AOP?如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由解:(1)由题意可设抛物线的解析式为 yax 2bx,将 A(3,0),B(2 ,2)代入yax 2bx 中,得 ,解得 ,9a 3b 04a 2b 2) a 1b 3)抛物线的解析式为 yx 。