函数的表示方法练习

函数的表示法夯实基础知识点 1 函数的表示法1一名老师带领 x 名学生到动物园参观,已知成人票每张 30 元,学生票每张 10 元设门票的总费用为 y 元,则 y 与 x 的关系式为( )Ay10 x30 By40 x Cy1030 x Dy20 x2在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长

函数的表示方法练习Tag内容描述:

1、函数的表示法夯实基础知识点 1 函数的表示法1一名老师带领 x 名学生到动物园参观,已知成人票每张 30 元,学生票每张 10 元设门票的总费用为 y 元,则 y 与 x 的关系式为( )Ay10x30 By40x Cy1030x Dy20x2在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 y(cm)与所挂物体的质量 x(kg)之间有如下关系:x(kg) 0 1 2 3 4 y(cm) 10 10.5 11 11.5 12 下列说法不正确的是( )Ay 随 x 的增大而增大B所挂物体质量每增加 1 kg,弹簧长度增加 0.5 cmC所挂物体质量为 7 kg 时,弹簧长度为 13.5 cmD不挂重物时弹簧的长度为 0 cm3小明骑自行车上学,。

2、1.2.2.1 函数的表示法A 级 基础巩固一、选择题1以下形式中,不能表示“y 是 x 的函数”的是( )A.B.Cyx 2Dx 2y 21解析:根据函数的定义可知,x 2y 21 不能表示“ y 是 x 的函数”答案:D2已知 x0 ,函数 f(x)满足 f x 2 ,则 f(x)的表达式为( )(x 1x) 1x2Af(x) x Bf(x)x 221xCf(x)x 2 Df(x) (x 1x)2 解析:因为 f x 2 2,(x 1x) 1x2 (x 1x)2 所以 f(x)x 22.答案:B3一等腰三角形的周长是 20,底边长 y 是关于腰长 x 的函数,则它的解析式为( )Ay202 xBy202x (0y,所以 2x202x ,即 x5.由 y0,即 202x0 得 x0 时,S 的增长会越来越快,故函。

3、7.2 7.2 坐标方法的简单应用坐标方法的简单应用 第第 1 1 课时课时 用坐标表示地理位置用坐标表示地理位置 基础训练基础训练 知识点知识点 1 用坐标表示地理位置用坐标表示地理位置 1.如图,正五边形 ABCDE 放入某平面直角坐标系后,若顶点 A,B,C,D 的 坐标分别是(0,a),(-3,2),(b,m),(c,m),则点 E 的坐标是( ) A.(2,-3) B.(2,3) C.(3,2) D.(3,-2) 2.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子 “炮”的坐标为( )21 教育网 A.(3,2) B.(3,1) C.(2,2) D.(-2,2) 3.如图是杭州西湖的部分示意图,如以过“曲院风荷”,“中。

4、2.1 函 数 2.1.2 函数的表示方法,学习目标 1.掌握函数的三种表示方法:列表法、图象法、解析法,体会三种表示方法的特点. 2.掌握函数图象的画法及分段函数的应用.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.在平面上, 个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可. 2.二次函数yax2bxc(a0)的顶点坐标为 .3.函数yx22x3(x1)(x3),所以函数与x轴的交点坐标为 , .,(3,0),两,(1,0),预习导引 1.函数的图象 (1)函数yf(x)与其图象F的关系: 图象F上任一点的。

5、3.1.2 3.1.2 函数的函数的表示法表示法 用时 45 分钟 基础巩固基础巩固 1.购买某种饮料 x 听,所需钱数为 y 元,若每听 2 元,用解析法将 y 表示成 xx1,2,3,4的函数为 Ay2x By2xxR Cy2xx1,2。

6、3.1.23.1.2 函数的表示法函数的表示法 一选择题 1 2017全国高一课时练习yaxa0的图象可能是 A B C D 2 2018全国高一课时练习已知 2 1, 0 1, 0 ,则,1的值为 A5 B2 C1 D2 3 2017全国。

7、函数的表示方法一、教学目标1、了解表示函数关系的三种主要方法.2、掌握在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量.3、会根据列表或图象解决一些实际问题.二、课时安排:1 课时.三、教学重点:表示函数关系的三种主要方法.四、教学难点:在已知函数表达式的情况下,已知自变量求函数值或已知函数值求自变量.五、教学过程(一)导入新课 在前面,我们曾用 s=80t,y=3x2-2x+4, ,来表示函数关系,其中:t,x,都表示231y自变量;s,y, 都表示因变量.那么这些表示函数的式子有什么共同特征?函数还有其它的表示方。

8、2.1.2 函数的表示方法,第2章 2.1 函数的概念,1.掌握函数的三种表示方法:列表法、解析法、图象法. 2.会根据不同的需要选择恰当方法表示函数. 3.掌握分段函数,并能简单应用.,学习目标,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,栏目索引,知识梳理 自主学习,知识点一 函数的三种表示方法,等式,图象,列表,答案,思考 (1)函数的三种表示方法各有什么优、缺点?,答 三种表示方法的优、缺点比较:,答案,(2)任何一个函数都可以用解析法、列表法、图象法三种形式表示吗?,并不是所有的函数都可以用解析式表示,不仅如此,图象法也不。

9、21.2 函数的表示方法学习目标 1.掌握函数的三种表示方法:列表法、解析法、图象法(重点);2.会根据不同的需要选择恰当方法表示函数(难点);3.掌握分段函数,并能简单应用(重点)预习教材 P3334,完成下面问题:知识点一 函数的三种表示方法表示法 定义解析法 用等式表示两个变量之间的函数关系图象法 用图象表示两个变量之间的函数关系列表法 用列表表示两个变量之间的函数关系【预习评价】 (1)函数的三种表示方法各有什么优、缺点?(2)任何一个函数都可以用解析法、列表法、图象法三种形式表示吗?提示 (1)三种表示方法的优、缺点比较:优。

10、第第 2 2 课时课时 函数的表示方法函数的表示方法 学习目标 1.了解函数的三种表示法及各自的优缺点, 会根据不同需要选择恰当的方法表示 函数.2.掌握求函数解析式的常用方法.3.会作函数的图像并从图像上获取有用信息 知识点 函数的表示方法 思考 函数三种表示法的优缺点各有哪些? 答案 1任何一个函数都可以用解析法表示( ) 2任何一个函数都可以用图像法表示( ) 3函数 f(x)2x1。

11、函数的表示方法一、夯实基础1、函数的表示方法有_ _、_ _、_三种2、某天小华骑自行 车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.右图描述了他上学的情景,下列说法中错误的是( )A修车时间为 15 分钟 B学校离家的距离为 2000 米C到达学校时共用时间 20 分钟 D自行车发生故障时离家距离为 1000 米 二、能力提升3、由于干旱,某水库的蓄水量随时间的增加而直线下降若该水库的蓄水量 V(万米 3)与干旱的时间 t(天)的关系如图所示,则下列说法正确的是( )A干旱开始后,蓄水量每天减少 20 万米 3B干旱开始后。

12、2.1.2函数的表示方法(二)一、选择题1下列图象能表示函数y|x|(x2,2)的图象的是()答案B解析由y|x|0知,图象在x轴下方,又x2,2,故图象端点为实点故选B.2设函数f(x)则f的值为()A. B C. D18答案A解析因为f(2)4,所以ff1.3设函数f(x)若f(a)f(1)2,则a等于()A3 B3C1 D1考点分段函数题点分段函数求值答案D解析f(1)1.f(a)f(1)f(a)12.f(a)1,即或解得a1,解得a1.a1.4函数f(x)的值域是()AR B0,)C0,3 Dx|0x2或x3考点分段函数题点分段函数的定义域、值域答案D解析值域为0,23,2x|0x2或x35。

13、2.1.2函数的表示方法(一)一、选择题1若二次函数f(x)x2bxc的顶点为(1,2),则b,c的值分别为()A2,1 B2,1C1,1 D1,3答案A解析由题意知f(x)(x1)22x22x1,所以b2,c1.2若函数f(2x1)x22x,则f(3)等于()A1 B0 C1 D3答案A解析方法一令2x1t,则x.故f(t)22(t26t5),即f(x)(x26x5)故f(3)(32635)1.方法二令2x13,得x1.从而f(3)f(211)12211.3设f(x),则f是()Af(x) Bf(x)C. D.答案A解析ff(x)4已知f,则f(x)的解析式为()Af(x)Bf(x)Cf(x)(x0且x1)Df(x)1x答案。

14、2.1.2函数的表示方法基础过关1.已知yf(x)是一次函数,2f(2)3f(1)5,2f(0)f(1)1,则f(x)表达式为()A.f(x)3x2 B.f(x)3x2C.f(x)2x3 D.f(x)2x3解析 设f(x)kxb(k0),2f(2)3f(1)5,2f(0)f(1)1,f(x)3x2.答案A2.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:每间房定价100元90元80元60元住房率65%75%85%95%要使每天的收入最高,每间房的定价应为()A.100元 B.90元 C.80元 D.60元解析每间客房定价、住房率与收入如下表所示,可知选C.每间房定价100元90元80元60元住房率65%75%85%95%收入6 500元6 7。

15、2.1.2函数的表示方法(二)学习目标1.掌握分段函数的图象.2.了解分段函数的概念并能进行简单应用知识点分段函数对于一个函数,在定义域内不同的部分上,有不同解析表达式,这种函数叫做分段函数提示分段函数是一个函数,而不是几个函数,每一个分段是这个函数的一部分分段函数的图象由几个不同部分组成,它的定义域是各段“定义域”的并集.题型一分段函数的图象例1(1)作出yx2|x|2的图象;(2)作出y|x22x3|的图象解(1)yx2|x|2其图象如图所示(2)因为y|x22x3|所以可分段画出图象,如图所示反思感悟(1)含有绝对值的函数解析式,要去掉绝对值,变。

16、1.2.2表示函数的方法学习目标1.掌握函数的三种表示方法:解析法、图象法、列表法.2.会根据不同的需要选择恰当方法表示函数知识链接1在平面上,两个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可2二次函数yax2bxc(a0)的顶点坐标为(,)3函数yx22x3(x1)(x3),所以函数与x轴的交点坐标为(1,0),(3,0)预习导引1表示函数的方法(1)把一个函数的对应法则和定义域交待清楚的办法,就是表示函数的方法;(2)表示函数的三种主要方法分别是:解析法、图象法和列表法2解析法(1)解析式:把常量和表示自变量的字母用一系列运算符号连接。

【函数的表示方法练习】相关PPT文档
【函数的表示方法练习】相关DOC文档
《2.1.2函数的表示方法》课后作业含答案
1.2.2 表示函数的方法 学案(含答案)
标签 > 函数的表示方法练习[编号:175572]