人教A版高中数学必修一课件2.3 幂函数

3.2.1 几类不同增长的函数模型,第三章 3.2 函数模型及其应用,学习目标 1.尝试将实际问题转化为函数模型. 2.了解指数函数、对数函数及幂函数等函数模型的增长差异. 3.会根据函数的增长差异选择函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数模型,自由落体速

人教A版高中数学必修一课件2.3 幂函数Tag内容描述:

1、3.2.1 几类不同增长的函数模型,第三章 3.2 函数模型及其应用,学习目标 1.尝试将实际问题转化为函数模型. 2.了解指数函数、对数函数及幂函数等函数模型的增长差异. 3.会根据函数的增长差异选择函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数模型,自由落体速度公式vgt是一种函数模型.类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?,答案,答案 函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假。

2、第2课时 分段函数及映射,第一章 1.2.2 函数的表示法,学习目标 1.会用解析法及图象法表示分段函数. 2.给出分段函数,能研究有关性质. 3.了解映射的概念.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 分段函数,设集合AR,B0,).对于A中任一元素x,规定:若x0,则对应B中的yx;若x0,则对应B中的yx.按函数定义,这一对算不算函数?,答案,答案 算函数.因为从整体来看,A中任一元素x,在B中都有唯一确定的y与之对应.,(1)一般地,分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的 的函数. (2)分段函数是一。

3、第1课时 函数的表示法,第一章 1.2.2 函数的表示法,学习目标 1.了解函数的三种表示法及各自的优缺点. 2.掌握求函数解析式的常见方法. 3.尝试作图并从图象上获取有用的信息.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 解析法,一次函数如何表示?,答案,答案 ykxb(k0).,梳理,一般地,解析法是指:用 表示两个变量之间的对应关系.,数学表达式,思考,知识点二 图象法,要知道林黛玉长什么样,你觉得一个字的描述和一张二寸照片哪个更直观?,答案,答案 一图胜千言.,梳理,一般地,图象法是指:用 表示两个变量之间的对应关系;这。

4、第1课时 函数的单调性,第一章 1.3.1 单调性与最大(小)值,学习目标 1.理解函数单调区间、单调性等概念. 2.会划分函数的单调区间,判断单调性. 3.会用定义证明函数的单调性.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数的单调性,画出函数f(x)x、f(x)x2的图象,并指出f(x)x、f(x)x2的图象的升降情况如何?,答案,答案 两函数的图象如下:,函数f(x)x的图象由左到右是上升的;函数f(x)x2的图象在y轴左侧是下降的,在y轴右侧是上升的.,一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为增函。

5、6 指数函数、幂函数、对数函数增长的比较,第三章 指数函数和对数函数,学习目标 1.了解三种函数的增长特征. 2.初步认识“直线上升”“指数爆炸”和“对数增长”. 3.尝试函数模型的简单应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 同类函数增长特点,思考 同样是增函数,当x从2变到3,y2x到y10x的纵坐标增加了多少?,答案 23224,103102900,即同样是x从2变到3,y2x与y10x的纵坐标分别增加了4和900.,梳理 当a1时,指数函数yax是增函数,并且当a越大时,其函数值的增长就越快. 当a1时,对数函数ylogax是增函数,并且当a越小。

6、2.4 函数与方程 2.4.1 函数的零点,学习目标 1.理解函数零点的概念. 2.会求一次函数、二次函数的零点. 3.初步了解函数的零点、方程的根、函数图象与x轴交点的横坐标之间的关系.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 考查下列一元二次方程与对应的二次函数: (1)方程x22x30与函数yx22x3; (2)方程x22x10与函数yx22x1; (3)方程x22x30与函数yx22x3. 请列表表示出方程的根,函数的图象及图象与x轴交点的坐标.,答案,预习导引 1.函数的零点 (1)定义:一般地,如果函数yf(x)在。

7、2.2.2 对数函数及其性质(二),第二章 2.2 对数函数,学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法. 2.掌握对数型复合函数奇偶性的判定方法. 3.会解简单的对数不等式. 4.了解反函数的概念及它们的图象特点.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 ylogaf(x)型函数的单调区间,我们知道y2f(x)的单调性与yf(x)的单调性相同,那么ylog2f(x)的单调区间与yf(x)的单调区间相同吗?,答案,答案 ylog2f(x)与yf(x)的单调区间不一定相同,因为ylog2f(x)的定义域与yf(x)定义域不一定相同.,一般地,形如函数f(x)l。

8、2.1 函 数 2.1.4 函数的奇偶性,学习目标 1.结合具体函数,了解函数奇偶性的含义. 2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系. 3.会利用函数的奇偶性解决简单问题.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.关于y轴对称的点的坐标,横坐标 ,纵坐标 ;关于原点对称的点的坐标,横坐标 ,纵坐标 . 2.如图所示,它们分别是哪种对称的图形?答案 第一个既是轴对称图形、又是中心对称图形,第二个和第三个图形为轴对称图形.,互为相反数,互为相反数,相。

9、3.2.2 函数模型的应用实例,第三章 3.2 函数模型及其应用,学习目标 1.能利用已知函数模型求解实际问题. 2.能自建确定性函数模型解决实际问题. 3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 几类已知函数模型,指数型函数与指数函数在解析式上有什么不同?,答案,答案 指数函数yax(a0,a1)的系数为1,且没有常数项.确定一个指数函数解析式只需要一个条件;指数型函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)指数式前的系数不一定是1,而且可能还有常数项.所以确定。

10、2.1.2 指数函数及其性质(二),第二章 2.1 指数函数,学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断. 2.能借助指数函数性质比较大小. 3.会解简单的指数方程、不等式. 4.了解与指数函数相关的函数奇偶性的判断方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 不同底指数函数图象的相对位置,y2x与y3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?,答案,答案 经描点观察,在y轴右侧,2x3x,即y3x图象在y2x上方,经(0,1)点交叉,位置在y轴左侧反转,y2x在y3x图象上。

11、2.1.2 指数函数及其性质(一),第二章 2.1 指数函数,学习目标 1.理解指数函数的概念,了解对底数的限制条件的合理性. 2.掌握指数函数图象的性质. 3.会应用指数函数的性质求复合函数的定义域、值域.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 指数函数,细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与yx2有什么不同?,答案,答案 y2x.它的底为常数,自变量为指数,而yx2恰好反过来.,一般地, 叫。

12、2.2.2 对数函数及其性质(一),第二章 2.2 对数函数,学习目标 1.理解对数函数的概念. 2.掌握对数函数的性质. 3.了解对数函数在生产实际中的简单应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 对数函数的概念,已知函数y2x,那么反过来,x是否为关于y的函数?,答案,答案 由于y2x是单调函数,所以对于任意y(0,)都有唯一确定的x与之对应,故x也是关于y的函数,其函数关系式是xlog2y,此处y(0,).,一般地,我们把 叫做对数函数,其中x是自变量,函数的定义域是 .,梳理,函数ylogax(a0,且a1),(0,),思考,知识点二 对数函数。

13、2.1 函 数 2.1.2 函数的表示方法,学习目标 1.掌握函数的三种表示方法:列表法、图象法、解析法,体会三种表示方法的特点. 2.掌握函数图象的画法及分段函数的应用.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.在平面上, 个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可. 2.二次函数yax2bxc(a0)的顶点坐标为 .3.函数yx22x3(x1)(x3),所以函数与x轴的交点坐标为 , .,(3,0),两,(1,0),预习导引 1.函数的图象 (1)函数yf(x)与其图象F的关系: 图象F上任一点的。

14、2.1 函 数 2.1.3 函数的单调性,学习目标 1.了解函数单调性的概念,掌握判断简单函数单调性的方法. 2.能用文字语言和数学符号语言描述增函数、减函数、单调性等概念,能准确理解这些定义的本质特点.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.x22x2(x1)21 0; 2.当x2时,x23x2(x1)(x2) 0; 3.函数yx23x2的对称轴为 .,预习导引 1.增函数与减函数 一般地,设函数yf(x)的定义域为A,区间MA.如果取区间M中的 ,改变量 xx2x10,则当 时,就称函数yf(x)在区间M上是增函数,当 。

15、3.4 函数的应用(),学习目标 1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢;理解直线上升,对数增长,指数爆炸的含义. 2.会分析具体的实际问题,建模解决实际问题.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接,1.三种函数模型的性质,变陡,变缓,2.三种函数的增长速度比较 (1)在区间(0,)上,函数yax(a1),ylogax(a1)和yxn(n0)都是 ,但 不同,且不在同一个“档次”上.,增函数,增长速度,(2)在区间(0,)上随着x的增大,yax(a1)增长速度越来越快,会超过并远远大于yxn(n。

16、1.2.1 函数的概念,第一章 1.2 函数及其表示,学习目标 1.理解函数的概念. 2.了解构成函数的三要素. 3.能正确使用函数、区间符号.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数的概念,初中时用运动变化的观点定义函数,用这种观点能否判断只有一个点(0,1),算不算是函数图象?,答案,答案 因为只有一个点,用运动变化的观点判断就显得牵强,因此有必要引入用集合和对应来定义的函数概念.,函数的概念: 设A,B是 的 集,如果按照某种确定的 ,使对于集合 中的 一个数x,在集合 中都有 的数f(x)和它对应,那么就称f:AB为。

17、5 简单的幂函数(一),第二章 函 数,学习目标 1.了解幂函数的概念.,3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数有关问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 幂函数的概念,思考 y ,yx,yx2三个函数有什么共同特征?,答案 底数为x,指数为常数.,梳理 如果一个函数底数是自变量x,指数是常量,即yx,这样的函数称为幂函数.,知识点二 幂函数的图像与性质,思考 如图在同一坐标系内作出函数(1)yx;(2) ;(3)yx2;(4)yx1;(5)yx3的图像.,填写下表:,R,R,R,R,R,0,),x|x0,0,),0,),y|y0,增,加。

18、2.3 函数的应用(),学习目标 1.明确一次函数、二次函数、分段函数可作为数学模型解有关应用题. 2.初步掌握数学建模的方法. 3.通过数学建模的应用,培养应用意识.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,预习导引 常见函数模型,要点一 一次函数模型 例1 大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km为止,温度的降低大体上与升高的距离成正比,在12 km以上温度一定,保持在55 . (1)当地球表面大气的温度是a 时,在x km的上空为y ,求0x12时,a,x,y间的函数关系式。

19、3.3 幂函数,学习目标 1.了解幂函数的概念,会求幂函数的解析式. 2.结合幂函数yx,yx2,yx3,y ,y 的图象,掌握它们的性质. 3.能利用幂函数的单调性比较指数幂的大小.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接,R,增,奇,0,),(,0),0,),偶,x|x0,减,减,奇,预习导引 1.幂函数的概念 函数yx叫做幂函数,其中x是自变量,是常数.,2.幂函数的图象与性质,0,),(,0) (0,),0,),0,),y|yR,且 y0,奇,偶,奇,非奇非偶,奇,增,增,减,增,增,减,减,(1,1),解 根据幂函数定义得, m2m11,解得m2。

20、2.3 幂函数,第二章 基本初等函数(),学习目标 1.理解幂函数的概念. 2.掌握yx(1, ,1,2,3)的图象与性质. 3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 幂函数的概念,y ,yx,yx2三个函数有什么共同特征?,答案,答案 底数为x,指数为常数.,一般地, 叫做幂函数,其中x是自变量,是常数.,梳理,函数 yx,知识点二 五个幂函数的图象与性质,1.在同一平面直角坐标系内函数(1)yx;(2)yx ;(3)yx2;(4)yx1;(5)yx3的图象如图.,2.五个幂函数的性。

【人教A版高中数学必修一课件】相关PPT文档
人教B版高中数学必修一课件:3.3 幂函数
人教A版高中数学必修一课件:2.3 幂函数
标签 > 人教A版高中数学必修一课件2.3 幂函数[编号:132055]