二次函数实际应用题

第 1 页(共 29 页)2019-2020 一元二次方程应用题培优专题练习(中考真题含答案)一选择题(共 7 小题)1某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是 1000 万元,月平均增长率相同,第一季度的总营业额是 3990 万元若设月平均增长率是 x,那么可列出的方程是( )

二次函数实际应用题Tag内容描述:

1、第 1 页(共 29 页)2019-2020 一元二次方程应用题培优专题练习(中考真题含答案)一选择题(共 7 小题)1某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是 1000 万元,月平均增长率相同,第一季度的总营业额是 3990 万元若设月平均增长率是 x,那么可列出的方程是( )A1000(1+x) 23990B1000+1000(1+x)+1000(1+x) 23990C1000(1+2x )3990D1000+1000 (1+ x)+1000(1+2x)39902新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016 年销量为 50.7 万辆,销量。

2、 专题提升(八) 二次函数在实际生活中的应用 (人教版九上 P50 探究 2) 某商品现在的售价为每件 60 元,每星期可卖出 300 件市场调查反映:如调整价格, 每涨价 1 元,每星期要少卖出 10 件;每降价 1 元,每星期可多卖出 20 件已知商品的进价 为每件 40 元,如何定价才能使利润最大? 【思想方法】 本题是一道复杂的市场营销问题,不能直接列出函数模型,需要分情况 讨论,。

3、 一、选择题一、选择题 9 (2019山西)山西)北中环桥是省城太原的一座跨汾河大桥(如图 1),它由五个高度不同,跨径也不同的抛物线型钢拱 通过吊杆,拉索与主梁相连.最高的钢拱如图 2 所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面 内,与拱脚所在的水平面相交于 A,B 两点,拱高为 78 米(即最高点 O 到 AB 的距离为 78 米),跨径为 90 米,(即 AB 90 米),以。

4、26.3 第 1 课时 二次函数问题的实际应用知识点 1 二次函数与运动路线问题1.小斌在今年的学校秋季运动会跳远比赛中跳出了满意的一跳,如图 2631,函数h3.5t4.9t 2(t 的单位:s,h 的单位:m)可以描述他跳跃时重心高度随时间的变化情况,则他起跳后到重心最高时所用的时间大约是( )图 2631A0.71 s B0.70 sC0.63 s D0.36 s2某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度 h(单位:m)与水流运动时间 t(单位:s)之间的关系式为 h30t5t 2,那么水流从抛出至回落到地面所需要的时间是( )A6 s B4 s C3 s D2 s知识点 2 二次函数与。

5、提分专练(四)一次函数、方程、不等式的实际应用题|类型1|有关方程(组)的应用题1.2018深圳某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满.设大房间有x个,小房间有y个.下列方程组正确的是()A.x+y=70,8x+6y=480B.x+y=70,6x+8y=480C.x+y=480,6x+8y=70D.x+y=480,8x+6y=702.2019淮安某公司用火车和汽车运输两批物资,具体运输情况如下表:所用火车车皮数量/节所用汽车数量/辆运输物资总量/吨第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?|类型2|有关方程(组)与不等式的应用题综合3.201。

6、2021 中考数学一轮专题突破:二次函数的实际应用中考数学一轮专题突破:二次函数的实际应用 一、选择题一、选择题 1. 某商品进货单价为 90 元/个,按 100 元/个出售时,能售出 500 个,如果这种商品每个每涨价 1 元,那么其销售量就减少 10 个,为了获得最大利润,其单价应定为( ) A130 元/个 B120 元/个 C110 元/个 D100 元/个 2. 北中环桥是省城太。

7、UNIT THREE,第三单元 函数,第 16 课时 二次函数的实际应用,| 考点聚焦 |,考点一 二次函数的最值应用,考点二 建立二次函数模型解决问题,| 对点演练|,题组一 必会题,题组二 易错题,探究一 利用二次函数解决抛物线形问题,探究二 二次函数在营销问题方面的应用,针对训练,探究三 利用二次函数解决决策问题微专题,考向1 顶点的横坐标在自变量取值范围内的决策问题,考向2 顶点的横坐标不在自变量取值范围内的决策问题,强化训练,。

8、专题 9 二次函数的实际应用问题例题精讲例 1.定义符号 mina,b 的含义为:当 ab 时 mina,b=b;当 ab 时 mina,b=a 如:min1,-3=3,min 4, 2=4,则 minx2+2,x的最大值是( )A. 1 B. 2 C. 1 D. 0【答案】 C 【解析】【解答】联立 y= -x2+2y= -x解得 , x1= -1y1=1 x2=2y2= -2所以 minx2+2, x的最大值是 1故答案为:C例 2.如图,有一块边长为 6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A. cm2 B. 。

9、课时训练(十六) 二次函数的实际应用(限时:30 分钟)|夯实基础|1. 2018北京 跳台滑雪是冬季奥运会比赛项目之一 . 运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度 y(单位:m) 与水平距离 x(单位:m)近似满足函数关系 y=ax2+bx+c(a0). 图 K16-1 记录了某运动员起跳后的 x 和 y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )图 K16-1A. 10 m B. 15 mC. 20 m D. 22. 5 m2. 2018连云港 已知学校航模组设计制作的火箭的升空高度 h(m)与飞行时间 t(s)满足函数表达式 h=-t2+24t+1。

10、20212021 中考三轮查漏补缺:二次函数的实际应用中考三轮查漏补缺:二次函数的实际应用 一、选择题一、选择题 1. 某种服装的销售利润 y(万元)与销售数量 x(万件)之间满足函数解析式 y2x24x5,则 利润的( ) A最大值为 5 万元 B最大值为 7 万元 C最小值为 5 万元 D最小值为 7 万元 2. 某广场有一喷水池,水从地面喷出,以水平地面为 x 轴,出水点为原点,建立如。

11、第 19 章 一次函数 实际应用题专练(一) 1已知A、B两地相距 80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中 DE、OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象 (1)乙先出发,甲后出发,相差 h; (2)甲骑摩托车的速度为 60km/h,直接写出甲离开A地后s(km)与时间t(h)的函数表达式及自变 量t的取值范围; (3)当乙出发。

12、题型五 函数的实际应用题类型一 最大利润问题1. 新春佳节,电子鞭炮因其安全、无污染开始走俏某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒 80 元,市场调查发现,该种电子鞭炮每天的销售量 y(盒) 与销售单价 x(元) 有如下关系: y2x320(80x160) 设这种电子鞭炮每天的销售利润为 w 元(1)求 w 与 x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?2. 某旅行社推出一条成本价为 500 元/人的省内旅游线路,游客人数 y(人/ 月) 与旅游报价 x(元/ 人) 之间的关系为 yx1300,已知:。

13、2021 年中考一轮复习应用题分类训练之:实际问题与一元二次方程年中考一轮复习应用题分类训练之:实际问题与一元二次方程 1把一块长与宽之比为 2:1 的铁皮的四角各剪去一个边长为 10 厘米的小正方形,折起四边,可以做成一 个无盖的盒子,如果这个盒子的容积是 1500 立方厘米,设铁皮的宽为 x 厘米,则正确的方程是( ) A (2x20) (x20)1500 B10(2x10) (x10)150。

14、2021 年中考一轮复习应用题分类训练之:实际问题与一次函数年中考一轮复习应用题分类训练之:实际问题与一次函数 1汽车由 A 地驶往相距 120km 的 B 地,它的平均速度是 30km/h,则汽车距 B 地路程 s(km)与行驶时间 t (h)的函数关系式及自变量 t 的取值范围是( ) As12030t(0t4) Bs12030t(t0) Cs30t(0t40) Ds30t(t4) 2等腰三角。

15、一、选择题1、 ( 2018 北京房山区第一学期检测)小明 以二次函数 的图象为灵感为248yx“2017 北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若 AB=4,DE=3,则杯子的高 CE 为A14 B11 C6 D3答案:B2、(2018 北京怀柔区第一学期期末)网球单打比赛场地宽度为 8 米,长度在球网的两侧各为 12 米,球网高度为 0.9 米(如图 AB 的高度).中网比赛中,某运动员退出场地在距球网 14 米的 D 点处接球,设计打出直线穿越球,使球落在对方底线上 C 处,用刁钻的落点牵制对方.在这次进攻过程中,为保证战术成功,该运动员击球点高。

16、要题随堂演练1(2018威海中考)如图,将一个小球从斜坡的点 O 处抛出,小球的抛出路线可以用二次函数 y4x x2刻画,斜坡可以用一次函数 y x 刻画下列结12 12论错误的是( )A当小球抛出高度达到 7.5 m 时,小球距 O 点水平距离为 3 mB小球距 O 点水平距离超过 4 米呈下降趋势C小球落地点距 O 点水平距离为 7 米D斜坡的坡度为 122(2018绵阳中考)如图是抛物线型拱桥,当拱顶离水面 2 m 时,水面宽 4 m,水面下降 2 m,水面宽度增加 _m.3(2018青岛中考)某公司投入研发费用 80 万元(80 万元只计入第一年成本),成功研发出一种产品公司按订单生产(产。

17、第 19 章一次函数实际应用题专练(二) 1某生态体验园推出了甲、乙两种消费卡(最多 50 次),设入园次数为x时所需费用为y元,选择这两 种卡消费时y与x之间的函数关系如图所示,解答下列问题: ( 1 ) 分 别 写 出 选 择 这 两 种 卡 消 费 时y关 于x的 函 数 表 达 式 ( 不 用 写x的 取 值 范 围) , ; (2)请根据入园次数确定选择哪种消费卡比较合算 2。

18、 一、选择题一、选择题 9 (2019山西)山西)北中环桥是省城太原的一座跨汾河大桥(如图 1),它由五个高度不同,跨径也不同的抛物线型钢拱 通过吊杆,拉索与主梁相连.最高的钢拱如图 2 所示,此钢拱(近似看成二次函数的图象抛物线)在同一竖直平面 内,与拱脚所在的水平面相交于 A,B 两点,拱高为 78 米(即最高点 O 到 AB 的距离为 78 米),跨径为 90 米,(即 AB 90 米),以最高点 O 为坐标原点,以平行于 AB 的直线为 x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式 为( ) A.y 26 675 x2 B.y 26 675 x2 C.y 13 1350 x2 D.y 13 1350 x2 第 9 题。

19、2019年全国中考数学真题分类汇编:二次函数的实际应用一、选择题1. (2019年湖北省襄阳市)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h20t5t2,则小球从飞出到落地所用的时间为 s【考点】二次函数的实际应用【解答】解:依题意,令h0得020t5t2得t(205t)0解得t0(舍去)或t4即小球从飞出到落地所用的时间为4s故答案为4二、填空题1. (2019年四川省广安市)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为yx2+x+,由。

20、2021 年中考一轮复习应用题分类训练之:实际问题与二次函数年中考一轮复习应用题分类训练之:实际问题与二次函数 1某中学课外兴趣活动小组准备围建一个矩形苗圃园, 其中一边靠墙,另外三边用长为 40 米的篱笆围成, 已知墙长为 18 米(如图所示) ,设这个苗圃园垂直于墙的一边长为 x 米,围成的苗圃面积为 y,则 y 关于 x 的函数关系式为( ) Ayx(40 x) Byx(18x) Cyx(。

【二次函数实际应用题】相关PPT文档
【二次函数实际应用题】相关DOC文档
标签 > 二次函数实际应用题[编号:180979]