课题23锐角三角函数基础知识梳理中考题型突破易混易错突破河北考情探究A的余弦:cosA==A的正切:tanA==.考点二特殊角第二十八章锐角三角函数28.1锐角三角函数10m1m5m第五章三角形第24讲锐角三角函数1.在RtABC中,已知C90,A40,BC3,则AC的长为()A.3sin4028.
初中三角函数课件Tag内容描述:
1、1 同角三角函数的基本关系,第三章 三角恒等变形,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 同角三角函数的基本关系式,思考1,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1. 由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 设角的终边与。
2、第一章 三角函数,9 三角函数的简单应用,学习目标 1.会用三角函数解决一些简单的实际问题. 2.体会三角函数是描述周期变化现象的重要函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 利用三角函数模型解释自然现象,现实世界中的周期现象可以用哪种数学模型描述?,答案,答案 三角函数模型.,在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.,梳理,(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意. 读题。
3、章末复习课,第1章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握同角三角函数基本关系及诱导公式. 3.能画出ysin x,ycos x,ytan x的图象. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图象的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ; (3) 叫做的 ,记作 ,即 .,tan ,正弦,sin ,sin y,余弦,cos ,cos x,。
4、1.3.1 三角函数的周期性,第1章 1.3 三角函数的图象和性质,学习目标 1.了解周期函数、周期、最小正周期的定义. 2.理解函数ysin x,ycos x,ytan x都是周期函数,都存在最小正周期. 3.会求函数yAsin(x)及yAcos(x)的周期.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 周期函数,思考,单摆运动、时钟的圆周运动、四季变化等,都具有周期性变化的规律,对于正弦、余弦函数是否也具有周期性?请说明你的理由.,答案 由单位圆中的三角函数线可知,正弦、余弦函数值的变化呈现出周期现象.每当角增加(或减少)2,所得角的终边与原来角的终。
5、1.2.2 同角三角函数关系,第1章 1.2 任意角的三角函数,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 同角三角函数的基本关系式,思考1,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1.由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 设角的终。
6、第2课时 三角函数线,第1章 1.2.1 任意角的三角函数,学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 有向线段,思考1,比如你从学校走到家和你从家走到学校,效果一样吗?,答案 不一样.,思考2,如果你觉得效果不同,怎样直观的表示更好?,答案 用有向线段AB和BA表示较好.,答案,有向线段 (1)有向线段:规定了 (即规定了起点和终点)的线段称为有向线段. (2)有向直。
7、1.3 三角函数的诱导公式(二),第一章 三角函数,学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 诱导公式五,由此可得诱导公式五,cos ,sin ,思考,知识点二 诱导公式六,能否利用已有公式得出 的正弦、余弦与角的正弦、余弦之间的关系?,答案,答案 以代替公。
8、1.6 三角函数模型的简单应用,第一章 三角函数,学习目标 1.会用三角函数解决一些简单的实际问题. 2.体会三角函数是描述周期变化现象的重要函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 利用三角函数模型解释自然现象,现实世界中的周期现象可以用哪种数学模型描述?,答案,答案 三角函数模型.,在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.,(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意. 读。
9、章末复习课,第一章 三角函数,学习目标 1.理解任意角的三角函数的概念. 2.掌握同角三角函数基本关系及诱导公式. 3.能画出ysin x,ycos x,ytan x的图象. 4.理解三角函数ysin x,ycos x,ytan x的性质. 5.了解函数yAsin(x)的实际意义,掌握函数yAsin(x)图象的变换.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.任意角三角函数的定义 在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做的 ,记作 ,即 ; (2)x叫做的 ,记作 ,即 ;(3) 叫做的 ,记作 ,即 .,正弦,sin ,sin y,余弦,cos ,cos x,正切,t。
10、第7章 锐角三角函数复习,三角函数,一、基本定义:,你觉得运用时应该注意什么?,例1:如图,ABC中,AC=4,BC=3,BA=5,则 sinA=_,sinB=_. cosA=_,cosB=_. tanA=_,tanB=_.,你发现了什么了吗?,练习1、如图,在RtABC中,ACB=90,CD是斜边AB上的高,AB=5,AC=3,则sinBCD=_.,练习2、RtABC中,C=900 , 求tanB,cosA,正切值随着锐角的度数的增大而_; 正弦值随着锐角的度数的增大而_; 余弦值随着锐角的度数的增大而_.,增大,增大,减小,二、三角函数的增减性:,异名函数化为同名函数,练习1、比较大小: (1)sin250_sin430 (2)cos70_cos80 (3)sin。
11、,苏科数学,7.3 特殊角的三角函数,问题情境,(1)你知道三角尺各个角的度数吗? (2)每块三角尺的三边之间有怎样的关系?,活动1:思考与探索,回顾三角函数的概念,你能求出30、45、60角的三角函数值吗? 利用定义量出三角尺各边的长度,利用三角函数的定义得到各个特殊角的三角函数的近似值. 利用计算器求得各个特殊角的三角函数的近似值. 利用含特殊角的直角三角形的三边关系求得各个特殊角的三角函数的准确值.,活动2:观察与思考,分别画出一个等腰直角三角形、有一个锐角为30的直角三角形. 一、如果它们的最短边均为1,那么其余边长分别。
12、,苏科数学 九年级(下册),7.4 由三角函数值求锐角,南京师大附中江宁分校 叶军,提出问题,长13m的笔直滑梯AB的高BC为5m,你能知道该滑梯与地面所成的A的大小吗?,【活动1】,估计一下A和30角的大小关系,再用量角器量一下A的大小。你能求出这个角的正弦、余弦、正切值吗?,如果借助于计算器,你能求出A的近似值吗?,【活动2】,例1.根据下列三角函数值,求锐角(精确到0.1),练习1. 根据下列三角函数值,求锐角(精确到0.01),例2.在等腰ABC中,AB=AC=4,BC=6.求B(精确到0.1),练习2. 秋千的长OA为3.5m,求秋千摆动到OA 的位置时,点A 相对于最。
13、,苏科数学 九年级(下册),7.6 用锐角三角函数解决问题(3),南京师大附中江宁分校 叶军,问题情境,热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30,看这栋高楼底部C处的俯角为60,若热气球与高楼的水平距离为90m,则这栋高楼有多高?,【活动1】 如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30,飞行一段距离后,在B处测得该小岛的俯角为60求飞机的飞行距离,【活动2】 海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方。
14、,苏科数学 九年级(下册),7.6 用锐角三角函数解决问题(2),南京师大附中江宁分校 叶军,问题情境,游乐场的大型摩天轮的半径为20m,旋转1周需要12min小明从摩天轮的底部(离地面约0.3m)出发开始观光,经过2min后,小明离地面多高?,【活动1】 根据问题情境,完成下面的问题 (1)摩天轮启动多长时间后,小明离地面的高度将首次达到15.3 m? (2)转一周的过程中,小明将有多长时间在离地面30.3 m以上的空中?,例1.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边的摆动角度均为30求它摆动至最高位置与最低位置的高度之差(结果保留根号),。
15、4.1 任意角、弧度制及任意角的三角函数,第四章 三角函数、解三角形,ZUIXINKAOGANG,最新考纲,1.了解任意角的概念和弧度制,能进行弧度与角度的互化. 2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.角的概念 (1)任意角:定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;分类:角按旋转方向分为 、 和 . (2)所有与角终边相同的角,连同角在内,构成的角的集合是S _ . (3)象限角:使角的顶点与 重合,。
16、28.1锐角三角函数,第一课时,第二课时,第三课时,第四课时,人教版 数学 九年级 下册,正弦,第一课时,返回,鞋跟多高合适,美国人体工程研究学人员调查发现, 当高跟鞋的鞋底与地面的夹角为11左 右时,人脚的感觉最舒适,假设某成年人前脚掌到 脚后跟长为15厘米,请问鞋跟在几厘米高度为最佳?,11,1. 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实.,2. 理解锐角正弦的概念,掌握正弦的表示方法.,素养目标,3. 会根据直角三角形的边长求一个锐角的正弦值,并且能利用正弦求直角三角形的边长.,为了绿化荒山,。
17、第五章 三角形,第24讲 锐角三角函数,1.在RtABC中,已知C90,A40,BC3,则AC的长为 ( ) A.3sin 40 B.3sin 50 C.3tan 40 D.3tan 50 2.(2017兰州市)如图,一个斜坡长130 m,坡顶离水平地面的距离为50 m,那么这个斜坡与水平地面夹角的正切值等于 ( ) A. B. C. D.,D,C,3.(2016广东省)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cos 的值是 ( ) A. B. C. D.4.如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,则tan A的值为( ) A. B. C. 。
18、第二十八章 锐角三角函数,28.1 锐角三角函数,10m,1m,5m,10m,取宝物比赛,(1),(2),水平宽度,铅直高度,倾斜角,12.5米,3.8米,倾斜角=3.812.50.30,梯子在上升变陡的过程中: 倾斜角,铅直高度与梯子的比, 水平宽度与梯子的比, 铅直高度与水平宽度的比, 都发生了什么变化?,铅直高度,水平宽度,梯子在上升变陡的过程中: 倾斜角,铅直高度与梯子的比, 水平宽度与梯子的比, 铅直高度与水平宽度的比, 都发生了什么变化?,11.3米,6.2米,倾斜角=6.211.30.55,铅直高度,水平宽度,10.3米,7.5米,倾斜角=7.510.30.73,梯子在上升变陡的过程中: 倾斜角,铅。
19、课题23 锐角三角函数,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,A的余弦:cos A= = ; A的正切:tan A= = .,考点二 特殊角的三角函数值,考点三 直角三角形的边角关系 如图所示,在RtABC中,C=90,则有下列结论成立:,1.三边关系:勾股定理: a2+b2=c2 .,2.角的关系:A+B=C= 90 .,3.边角关系:sin A= =cos B,cos A= =sin B,tan A= . 温馨提示 解题时还经常用到同名三角函数之间的关系,如:sin2+cos2=1, sin =cos(90-),tan = 等.,考点四 解直角三角形及解直角三角形的实际应用问题 1.解直角三角形有两种基本类型: (1)已知一个锐角与一条边解。