8.1 正弦定理一课时作业含答案

14.3 两角和与差的正弦、余弦、正切公式及二倍角公式A组 基础题组1.若 sin = ,则 cos =( )2 33A.- B.- C. D.23 13 13 23答案 C 由二倍角公式得 cos =1-2sin 2 =1-2 = ,选 C.2 13132.(2019衢州质检)在ABC 中,cos

8.1 正弦定理一课时作业含答案Tag内容描述:

1、14.3 两角和与差的正弦、余弦、正切公式及二倍角公式A组 基础题组1.若 sin = ,则 cos =( )2 33A.- B.- C. D.23 13 13 23答案 C 由二倍角公式得 cos =1-2sin 2 =1-2 = ,选 C.2 13132.(2019衢州质检)在ABC 中,cos A= ,cos B= ,则 sin(A-B)=( )35 45A.- B. C.- D.725 725 925 925答案 B 在ABC 中,cos A= ,cos B= ,sin A= ,sin B= ,sin(A-B)=sin Acos B-cos Asin B=35 45 45 35,故选 B.7253.(2018温州十校联合体期初)若 ,且 3cos 2=sin ,则 sin 2 的值为( )(2, ) (4- )A.- B. C.- D.118 118 1718 1718答案 C 由 3cos 2=sin 可得 3(cos2-sin 2)。

2、第 1 节 牛顿第一定律一、学习目标1.理解牛顿第一定律的内容2.知道理想实验是科学探究的一 种重要方法3.理解惯性是物体保持静止状态或匀速直线运动状态的性质4.知道一切物体在任何情况下都具有惯性5.知道日常生活中的惯性现象6.能分析惯性现象在生活中的利用和危害学习重点是理解牛顿第一定律的内容。学习难点是对惯性的理解二、知识点解读知识点一:维持运动是否需要力1.亚里斯多德认为:力是维持物体运动状态的原因,这种观点是错误的;2.伽利略认为:力是改变物体运动状态的原因,这种观点是正确的。知识点二:牛顿第一定律1.内容:一。

3、6 6. .4.34.3 余弦定理正弦定理余弦定理正弦定理 第一课时第一课时 余弦定理余弦定理 基础达标 一选择题 1.在ABC 中,AB5,AC3,BC7,则BAC 的大小为 A.23 B.56 C.34 D.3 解析 由余弦定理的推论得。

4、8.18.1 基本立体图形基本立体图形 第一课时第一课时 多面体多面体 基础达标 一选择题 1.四棱柱有几条侧棱,几个顶点 A.四条侧棱四个顶点 B.八条侧棱四个顶点 C.四条侧棱八个顶点 D.六条侧棱八个顶点 解析 四棱柱有四条侧棱八个顶。

5、8.2余弦定理(一)基础过关1.在ABC中,已知a2,则bcosCccosB等于()A.1B.C.2D.4答案C解析bcosCccosBbca2.2.在ABC中,已知b2ac且c2a,则cosB等于()A.B.C.D.答案B解析b2ac,c2a,b22a2,cosB.3.边长为5,7,8的三角形的最大角与最小角的和是()A.90B.120C.135D.150答案B解析设中间角为,则cos,60,18060120为所求.4.在ABC中,若(a2c2b2)tanBac,则角B的值为()A.B.C.或D.或答案D解析由(a2c2b2)tanBac得即cosB,sinB或cosB0(舍去),又B为ABC的内角,所以B为或.5.在ABC中,已知A60。

6、第第 2 2 课时课时 正弦定理正弦定理 一一 1在ABC 中,若 A105 ,B45 ,b2 2,则 c 等于 A1 B2 C. 2 D. 3 答案 B 解析 A105 ,B45 ,C30 . 由正弦定理,得 cbsin Csin B2 。

7、14.7 正弦定理和余弦定理A 组 基础题组1.在ABC 中,a,b,c 分别为角 A,B,C 所对的边,若 a,b,c 成等差数列,B=30,ABC 的面积为 ,则32b=( )A. B.1+1+ 32 3C. D.2+2+ 32 3答案 B 由条件知 acsin B= ,得 ac=6,又 a+c=2b,则由余弦定理得 b2=a2+c2-2accos B=(a+c)2-2ac-12 32ac,即 b2=4b2-12-6 ,解得 b1=b2=1+ .3 3 32.如图,正三棱锥 P-ABC 的所有棱长都为 4.点 D,E,F 分别在棱 PA,PB,PC 上,则满足 DE=EF=3,DF=2 的DEF 的个数是( )A.1 B.2 C.3 D.4答案 C 令 PD=x,PE=y,PF=z,则 当 x=z 时, 当 xz 时,有两解.x2+y2-xy=9,y2+z2-zy=9,z2+x2-xz=4, x=z=2。

8、第三课时第三课时 余弦定理正弦定理应用举例余弦定理正弦定理应用举例 基础达标 一选择题 1.如图,两座灯塔 A 和 B 与海岸观察站 C 的距离相等,灯塔 A 在观察站 C 的南偏西 40 ,灯塔 B 在观察站 C 的南偏东 60 ,则灯塔。

9、第二课时第二课时 正弦定理正弦定理 基础达标 一选择题 1.在ABC 中,a3,A30 ,B15 ,则 c 等于 A.1 B. 2 C.3 2 D. 3 解析 C180 30 15 135 ,casin Csin A322123 2.应选 。

10、1正弦定理与余弦定理1.1正弦定理(一)基础过关1.在ABC中,ABc,ACb,BCa,下列等式中总能成立的是()A.asin Absin B B.bsin Ccsin AC.absin Cbcsin B D.asin Ccsin A解析由正弦定理,得asin Ccsin A.答案D2.在ABC中,三个内角A,B,C的对边分别为a,b,c,已知a,b,B60,那么A等于()A.135 B.90 C.45 D.30解析由得sin A,又0A,A45或135.又ab,AB,A45.答案C3.在锐角ABC中,角A,B所对的边分别为a,b,若2asin Bb,则A等于()A. B. C. D.解析在ABC中,利用正弦定理得2sin Asin Bsin B,又sin B0,。

11、8.1正弦定理(一)学习目标1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识链接下列说法中,正确的有_.(1)在直角三角形中,若C为直角,则sinA;(2)在ABC中,若ab,则AB;(3)在ABC中,CAB;(4)利用AAS、SSA都可以证明三角形全等;(5)在ABC中,若sinB,则B.答案(1)(2)(3)解析根据三角函数的定义,(1)正确;在三角形中,大边对大角,大角对大边,(2)正确;三角形的内角和为,(3)正确;AAS可以证明三角形全等,SSA不能证明,(4)不正确;若sinB,则B或。

12、8.1正弦定理(二)基础过关1.在ABC中,已知(bc)(ac)(ab)456,则sinAsinBsinC等于()A.456B.654C.753D.756答案C解析设bc4k,ac5k,ab6k(k0),三式联立可求得ak,bk,ck,abc753,即sinAsinBsinC753.2.在ABC中,a2bcosC,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由正弦定理得sinA2sinBcosC,sin (BC)2sinBcosC,sinBcosCcosBsinC2sinBcosC,sin (BC)0,BC,故选A.3.在ABC中,内角A,B,C所对的边分别是a,b,c.若3a2b,则的值为()A.B.C.1D.答案D解析,.3a2b,.2()212()211。

13、8.1正弦定理(一)基础过关1.在ABC中,下列关系中一定成立的是()A.absinAD.absinA答案D解析由正弦定理得,sinBsinA.又在ABC中,0sinB1,0sinA1.absinA.2.在ABC中,absinA,则ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案B解析由题意有b,则sinB1,即角B为直角,故ABC是直角三角形.3.在ABC中,若,则C的值为()A.30B.45C.60D.90答案B解析,又由正弦定理得.cosCsinC,即C45,故选B.4.在ABC中,若A105,B45,b2,则c等于()A.1B.2C.D.答案B解析A105,B45。

【8.1 正弦定理一课时作业含】相关DOC文档
标签 > 8.1 正弦定理一课时作业含答案[编号:135932]