3.1等比数列第1课时等比数列的概念及通项公式 学案含答案

4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 1在数列an中,若 an13an,a12,则 a4为( ) A108 B54 C36 D18 答案 B 解析 因为 an13an, 所以数

3.1等比数列第1课时等比数列的概念及通项公式 学案含答案Tag内容描述:

1、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 1在数列an中,若 an13an,a12,则 a4为( ) A108 B54 C36 D18 答案 B 解析 因为 an13an, 所以数列an是公比为 3 的等比数列, 则 a433a154. 2(多选)在等比数列an中,a11 8。

2、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 学习目标 1.通过实例, 理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数 列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形 知识点一 等比数列的概念 1定义:一般地,如果一个数列从第 2 项。

3、32等比数列的前n项和第1课时等比数列前n项和公式一、选择题1等比数列an中,a12,a21,则S100等于()A42100 B42100C4298 D42100答案C解析q.S1004(12100)4298.2等比数列an中,an2n,则它的前n项和Sn等于()A2n1 B2n2C2n11 D2n12答案D解析an2n,a12,q2,Sn2n12.3在等比数列an中,已知a13,an48,Sn93,则n的值为()A4 B5 C6 D7答案B解析显然q1,由Sn,得93,解得q2.由ana1qn1,得4832n1,解得n5.4设数列(1)n的前n项和为Sn,则Sn等于()A. B.C. D.答案D解析Sn.5等比数列an的前n项和为Sn,已知S5。

4、第4课时等比数列前n项和的性质及应用一、选择题1等比数列an中,a33S22,a43S32,则公比q等于()A2 B. C4 D.答案C解析a33S22,a43S32,a4a33(S3S2)3a3,即a44a3,q4.2设an是公比为q的等比数列,Sn是它的前n项和,若Sn是等差数列,则q等于()A1 B0 C1或0 D1答案A解析SnSn1an(n2且nN*),又Sn是等差数列,an为定值,即数列an为常数列,q1(n2且nN*)3设等比数列an的前n项和为Sn,已知S38,S67,则a7a8a9等于()A. B C. D.答案A解析因为a7a8a9S9S6,且S3,S6S3,S9S6也成等比数列,即8,1,S9S6成等比数列,所以8(S9S6)1,即S9S6,所以a7a8a9.4正项。

5、第二章 2.3.1 等比数列,第1课时 等比数列的概念及通项公式,学习目标 1.理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的概念,思考 观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,1,1,1,1,; 1,1,1,1,.,答案 从第2项起,每一项与它的前一项的比是同一个常数.,梳理 等比数列的概念和特点. (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的 都等于 常数,那么这个数列叫做等比。

6、32等比数列的前n项和第1课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题知识点一等比数列的前n项和公式已知量首项a1,项数n与公比q首项a1,末项an与公比q公式SnSn特别提醒:在应用公式求和时,应注意到Sn的使用条件为q1,而当q1时应按常数列求和,即Snna1.知识点二错位相减法在等比数列前n项和公式的推导中,我们使用的方法称为错位相减法主要解决的题型是:若bn是公差为d(d0)的等差数列,cn是公比为q(q1)的等比数列,求数列bncn的前n项和Sn.一般。

7、第3课时等比数列前n项和公式一、选择题1等比数列an中,a12,a21,则S100等于()A42100 B42100 C4298 D42100答案C解析q.S1004(12100)4298.2在等比数列an中,已知a13,an48,Sn93,则n的值为()A4 B5 C6 D7答案B解析显然q1,由Sn,得93,解得q2.由ana1qn1,得4832n1,解得n5.3设Sn为等比数列an的前n项和,8a2a50,则等于()A11 B5 C8 D11答案D解析由8a2a50得8a1qa1q40,a10,q0,q2,则11.4已知数列an是等差数列,若a22,a44,a66构成等比数列,则数列an的公差d等于()A1 B1C2 D2答案B解析因为a22,a44,a6。

8、第4课时等比数列前n项和的性质及应用学习目标1.理解等比数列前n项和公式的函数特征.2.熟练应用等比数列前n项和公式的有关性质解题知识点一等比数列前n项和公式的函数特征当公比q1时,设A,等比数列的前n项和公式是SnA(qn1)即Sn是n的指数型函数当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数知识点二等比数列前n项和的性质1数列an为公比不为1的等比数列(或公比为1,且n不是偶数),Sn为其前n项和,则Sn,S2nSn,S3nS2n仍构成等比数列2若an是公比为q的等比数列,则SnmSnqnSm(n,mN*)3若an是公比为q的等比数列,S偶,S奇分别是数列的偶数。

9、4.3.1 第1课时 等比数列的概念及通项公式 学 习 目 标 核 心 素 养 1.理解等比数列的概念重点. 2.掌握等比数列的通项公式和等比中项及其应用重点 难点. 3.熟练掌握等比数列的判定方法易错点. 1.通过等比数列的通项公式及等比。

10、第3课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题知识点一等比数列的前n项和公式已知量首项、公比与项数首项、公比与末项求和公式SnSn知识点二错位相减法1推导等比数列前n项和的方法叫错位相减法2该方法一般适用于求一个等差数列与一个等比数列对应项积的前n项和,即若bn是公差d0的等差数列,cn是公比q1的等比数列,求数列bncn的前n项和Sn时,也可以用这种方法思考如果Sna1a2qa3q2anqn1,其中an是公差为d的等差数列,q1.两边同乘以q,再两式相减。

11、3等比数列31等比数列第1课时等比数列的概念及通项公式一、选择题12和2的等比中项是()A1 B1 C1 D2答案C解析设2和2的等比中项为G,则G2(2)(2)1,G1.2有下列四个说法:等比数列中的某一项可以为0;等比数列中公比的取值范围是(,);若一个常数列是等比数列,则这个常数列的公比为1;若b2ac,则a,b,c成等比数列其中正确说法的个数为()A0 B1 C2 D3答案B解析等比数列中公比不能取0,且各项均不可为0,所以只有正确3在等比数列an中,a18,a464,则a3等于()A16 B16或16C32 D32或32答案C解析由a4a1q3,得q38,即q2,所以a332.4公比为2的等比数列a。

12、2.3等比数列第1课时等比数列的概念及通项公式学习目标1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程知识点一等比数列的概念1定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q0)2递推公式形式的定义:q(n1).3等比数列各项均不能为0.知识点二等比中项与等差中项的异同对比项等差中项等比中项定义若a,A,b成等差数列,则A叫做a与b的等差中项若a,G,b成等比数列,则G叫做a与b的等比。

13、3等比数列31等比数列第1课时等比数列的概念及通项公式学习目标1.通过实例,理解等比数列的概念并学会简单应用.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程知识点一等比数列的概念1文字定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母q表示(q0)2递推公式形式的定义:q(n2,nN)(或q,nN)3等比数列各项均不能为0.思考下列所给的三个数列是等比数列的是_(填写序号)2,2,2,2,;0,1,2,4,8,;,2,2,4,.答案知识点二等。

【3.1等比数列第1课时等比数】相关PPT文档
【3.1等比数列第1课时等比数】相关DOC文档
标签 > 3.1等比数列第1课时等比数列的概念及通项公式 学案含答案[编号:149097]