人教版高中数学必修五2.4等比数列2课件

第二章 2.3 等比数列,2.3.2 等比数列的前n项和(二),学习目标 1.熟练应用等比数列的前n项和公式的有关性质解题. 2.会用错位相减法求和.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式的函数特征,思考 若数列an的前n项和Sn2n1,那么数列an是不

人教版高中数学必修五2.4等比数列2课件Tag内容描述:

1、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(二),学习目标 1.熟练应用等比数列的前n项和公式的有关性质解题. 2.会用错位相减法求和.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式的函数特征,思考 若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n+11呢?,答案 当Sn2n1时,,当Sn2n+11时,,当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列的前n项和的性质,思考 若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案 设an的公比为q,则 。

2、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。

3、第一章 数列,1.3.2 等比数列的前n项和(一),1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,梳理,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,知识点二 等比数列的前n项和公。

4、2.5 等比数列的前 n 项和(二)课时目标1熟练应用等比数列前 n 项和公式的有关性质解题2能用等比数列的前 n 项和公式解决实际问题1等比数列a n的前 n 项和为 Sn,当公比 q1 时,S n ;当a11 qn1 q a1 anq1 qq1 时,S nna 1.2等比数列前 n 项和的性质:(1)连续 m 项的和 (如 Sm、S 2mS m、S 3mS 2m),仍构成等比数列(注意:q1 或 m为奇数)(2)Smn S mq mSn(q 为数列 an的公比)(3)若a n是项数为偶数、公比为 q 的等比数列,则 q.S偶S奇3解决等比数列的前 n 项和的实际应用问题,关键是在实际问题中建立等比数列模型一、选择题1在各项都为正数的。

5、2.5 等比数列的前 n 项和(一)课时目标1掌握等比数列前 n 项和公式的推导方法2会用等比数列前 n 项和公式解决一些简单问题1等比数列前 n 项和公式:(1)公式:S nError!.(2)注意:应用该公式时,一定不要忽略 q1 的情况2若a n是等比数列,且公比 q1,则前 n 项和 Sn (1q n)A( qn1)其中a11 qA .a1q 13推导等比数列前 n 项和的方法叫错位相减法一般适用于求一个等差数列与一个等比数列对应项积的前 n 项和一、选择题1设 Sn为等比数列a n的前 n 项和,8a 2a 50,则 等于 ( )S5S2A11 B5C8 D11答案 D解析 由 8a2a 50 得 8a1qa 1q40,q2,则 11.S5。

6、2.3.3 等比数列的前n项和(一),第2章 2. 3 等比数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列前n项和公式及其推导 1.等比数列前n项和公式,答案,na1,(2)注意:应用该公式时,一定不要忽略q1的情况.,2.等比数列前n项和公式的推导 推导1 求等差数列前n项和用的是倒序相加法,对于等比数列an,若q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,。

7、2.3.3 等比数列的前n项和(二),第2章 2. 3 等比数列,1.熟练应用等比数列前n项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n项和有关的问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的前n项和的变式,答案,na1,当公比q1时,因为a10,所以Snna1是n的正比例函数(常数项为0的一次函数).,答案,AqnA,思考 在数列an中,an1can(c为非零常数)且前n项和Sn3n1k,则实数k_.,答案, 1 3,解析 由题意知an是等比数列, 3n的系数与常数项互为相反数, 而3n的系数为 1。

8、2.3.2 等比数列的通项公式(二),第2章 2. 3 等比数列,1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断是否成等比数列的方法.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 推广的等比数列的通项公式 an是等比数列,首项为a1,公比为q,则an ,an (m、nN*,mn). 思考1 如何推导anamqnm?,答案,a1qn1,amqnm,答案 根据等比数列的通项公式, ana1qn1, ama1qm1, an am qnm,anamqnm.,思考2 。

9、2.5 等比数列的前n项和(一),第二章 数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得 Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,梳理,当q1时,由于a1a2an,所以Snna1.,。

10、第二章 2.3.1 等比数列,第1课时 等比数列的概念及通项公式,学习目标 1.理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的概念,思考 观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,1,1,1,1,; 1,1,1,1,.,答案 从第2项起,每一项与它的前一项的比是同一个常数.,梳理 等比数列的概念和特点. (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的 都等于 常数,那么这个数列叫做等比。

11、第一章 数列,1.3.1 等比数列(二),1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形:ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,答案,设等比数列an的首项为a1,公比为q. 则ana1qn1 qn,其形式类似于指数。

12、2.3.1 等比数列的概念 2.3.2 等比数列的通项公式(一),第2章 2. 3 等比数列,1.通过实例,理解等比数列的概念并会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式,了解其推导过程.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的概念 1.定义:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q0). 2.递推关系 在数列an中,若 an1 an q(nN*),q为非0常。

13、2.5 等比数列的前n项和,第二章,第2课时 数列求和,推导等比数列前n项和公式的方法称为_法 答案 错位相减,1.分组转化求和法 如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解,3错位相减法 若数列an为等差数列,数列bn是等比数列,由这两个数列的对应项乘积组成的新数列为anbn,当求该数列的前n项的和时,常常采用将anbn的各项乘以公比q,然后错位一项与anbn的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法,分组转化求和,。

14、2.4 等比数列1等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于_,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示定义也可叙述为:在数列中,若为常数且,则是等比数列2等比中项如果在与中间插入一个数,使,成等比数列,那么_叫做与的等比中项3等比数列的通项公式设等比数列的首项为,公比为,则这个等比数列的通项公式是4等比数列与指数函数(1)等比数列的图象等比数列的通项公式还可以改写为,当且时,是指数函数,是指数型函数,因此数列的图象是函数的图象上一些孤立的点例如。

15、2.4 等比数列(一)课时目标1理解等比数列的定义,能够利用定义判断一个数列是否为等比数列2掌握等比数列的通项公式并能简单应用3掌握等比中项的定义,能够应用等比中项的定义解决有关问题1如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列这个常数叫做等比数列的公比,通常用字母 q 表示(q0) 2等比数列的通项公式:a na 1qn1 .3等比中项的定义如果 a、G、b 成等比数列,那么 G 叫做 a 与 b 的等比中项 ,且 G .ab一、选择题1在等比数列a n中,a n0,且 a21a 1,a 49a 3,则 a4a 5 的值为( )A16。

16、2.4 等比数列(二)课时目标1进一步巩固等比数列的定义和通项公式2掌握等比数列的性质,能用性质灵活解决问题1一般地,如果 m,n,k,l 为正整数,且 mnkl,则有 amana kal,特别地,当 mn2k 时, amana .2k2在等比数列a n中,每隔 k 项(kN *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列3如果a n,b n均为等比数列,且公比分别为 q1,q 2,那么数列 ,a nbn, ,1an bnan|an|仍是等比数列,且公比分别为 ,q 1q2, ,|q 1|.1q1 q2q1一、选择题1在等比数列a n中,a 11,公比|q| 1.若 ama 1a2a3a4a5,则 m 等于( )A9 B10C11 D12答。

17、2.4 等比数列(一),第二章 数列,1.通过实例,理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的概念,观察下列4个数列,归纳它们的共同特点 1,2,4,8,16,;,答案,从第2项起,每项与它的前一项的比是同一个常数,1,1,1,1,; 1,1,1,1,.,等比数列的概念和特点 (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的_ 等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 。

18、2.4 等比数列(二),第二章 数列,1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形: ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,设等比数列an的首项为a1,公比为q. 则ana1qn1 其形式类似于指数型函数,但q。

19、2.4 等比数列,第二章,第1课时 等比数列的概念与通项公式,1.还记得等差数列的定义吗?从_起,每一项与其前一项的差_的数列,称为等差数列 2等差数列的通项公式:_,是关于n的_ 3还记得指数型函数吗?_. 答案 1.第2项 等于同一个常数 2.ana1(n1)d 一次函数式 3.ycax(a0且a1),等比数列通项公式,等比数列的判定,等比中项,等比数列的应用题,构造等比数列的技巧,。

【人教版高中数学必修五2.4等】相关PPT文档
【人教版高中数学必修五2.4等】相关DOC文档
标签 > 人教版高中数学必修五2.4等比数列2课件[编号:145254]