苏教版高中数学必修五课件2.3.2 等比数列的通项公式二

2.2.1 等差数列的概念 2.2.2 等差数列的通项公式(一),第2章 2.2 等差数列,1.理解等差数列的定义,会用定义判断一个数列是否为等差数列. 2.能利用等差数列的定义求等差数列中的某一项. 3.理解等差中项的概念,并能利用等差中项的概念判断一个数列是否为等差数列.,学习目标,栏目索引,知

苏教版高中数学必修五课件2.3.2 等比数列的通项公式二Tag内容描述:

1、2.2.1 等差数列的概念 2.2.2 等差数列的通项公式(一),第2章 2.2 等差数列,1.理解等差数列的定义,会用定义判断一个数列是否为等差数列. 2.能利用等差数列的定义求等差数列中的某一项. 3.理解等差中项的概念,并能利用等差中项的概念判断一个数列是否为等差数列.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等差数列的概念 一般地,如果一个数列从 起,每一项减去它的前一项所得的差都等于 ,那么这个数列就叫做 数列,这个常数叫做等差数列的 ,公差通常用字母d表示. 思考1 等。

2、第一章 数列,1.3.2 等比数列的前n项和(一),1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,梳理,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,知识点二 等比数列的前n项和公。

3、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。

4、2.2.2 等差数列的通项公式(二),第2章 2.2 等差数列,1.能根据等差数列的定义推出等差数列的重要性质. 2.能运用等差数列的性质解决有关问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 推广的等差数列的通项公式 已知a1求an,则ana1(n1)d.(n1) 已知am求an,则anam(nm)d.(mn) 思考 已知等差数列an中的am和an,如何求d?,答案,答案 由an的通项公式得 ana1(n1)d, ama1(m1)d, 两式相减得anam(nm)d, d anam nm .,知识点二 等差数列的性质 1.若an,bn分别是公差为d,。

5、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(一),学习目标 1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式,思考 对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案 比较两式易知,两式相减能消去同类项,解出S64,,梳理 设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn。

6、2.3.3 等比数列的前n项和(一),第2章 2. 3 等比数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列前n项和公式及其推导 1.等比数列前n项和公式,答案,na1,(2)注意:应用该公式时,一定不要忽略q1的情况.,2.等比数列前n项和公式的推导 推导1 求等差数列前n项和用的是倒序相加法,对于等比数列an,若q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,。

7、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(二),学习目标 1.熟练应用等比数列的前n项和公式的有关性质解题. 2.会用错位相减法求和.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式的函数特征,思考 若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n+11呢?,答案 当Sn2n1时,,当Sn2n+11时,,当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列的前n项和的性质,思考 若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案 设an的公比为q,则 。

8、2.3.3 等比数列的前n项和(二),第2章 2. 3 等比数列,1.熟练应用等比数列前n项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n项和有关的问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的前n项和的变式,答案,na1,当公比q1时,因为a10,所以Snna1是n的正比例函数(常数项为0的一次函数).,答案,AqnA,思考 在数列an中,an1can(c为非零常数)且前n项和Sn3n1k,则实数k_.,答案, 1 3,解析 由题意知an是等比数列, 3n的系数与常数项互为相反数, 而3n的系数为 1。

9、第二章 2.3.1 等比数列,第1课时 等比数列的概念及通项公式,学习目标 1.理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的概念,思考 观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,1,1,1,1,; 1,1,1,1,.,答案 从第2项起,每一项与它的前一项的比是同一个常数.,梳理 等比数列的概念和特点. (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的 都等于 常数,那么这个数列叫做等比。

10、2.3.1 等比数列的概念 2.3.2 等比数列的通项公式(一),第2章 2. 3 等比数列,1.通过实例,理解等比数列的概念并会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式,了解其推导过程.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的概念 1.定义:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q0). 2.递推关系 在数列an中,若 an1 an q(nN*),q为非0常。

11、2.3.2 等比数列的通项公式(二),第2章 2. 3 等比数列,1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断是否成等比数列的方法.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 推广的等比数列的通项公式 an是等比数列,首项为a1,公比为q,则an ,an (m、nN*,mn). 思考1 如何推导anamqnm?,答案,a1qn1,amqnm,答案 根据等比数列的通项公式, ana1qn1, ama1qm1, an am qnm,anamqnm.,思考2 。

标签 > 苏教版高中数学必修五课件2.3.2 等比数列的通项公式二[编号:149368]