2.2.1 等差数列的概念 2.2.2 等差数列的通项公式(一),第2章 2.2 等差数列,1.理解等差数列的定义,会用定义判断一个数列是否为等差数列. 2.能利用等差数列的定义求等差数列中的某一项. 3.理解等差中项的概念,并能利用等差中项的概念判断一个数列是否为等差数列.,学习目标,栏目索引,知
苏教版高中数学必修五课件1.2 余弦定理一Tag内容描述:
1、2.2.1 等差数列的概念 2.2.2 等差数列的通项公式(一),第2章 2.2 等差数列,1.理解等差数列的定义,会用定义判断一个数列是否为等差数列. 2.能利用等差数列的定义求等差数列中的某一项. 3.理解等差中项的概念,并能利用等差中项的概念判断一个数列是否为等差数列.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等差数列的概念 一般地,如果一个数列从 起,每一项减去它的前一项所得的差都等于 ,那么这个数列就叫做 数列,这个常数叫做等差数列的 ,公差通常用字母d表示. 思考1 等。
2、2.3.1 等比数列的概念 2.3.2 等比数列的通项公式(一),第2章 2. 3 等比数列,1.通过实例,理解等比数列的概念并会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式,了解其推导过程.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的概念 1.定义:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q0). 2.递推关系 在数列an中,若 an1 an q(nN*),q为非0常。
3、2.3.3 等比数列的前n项和(一),第2章 2. 3 等比数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列前n项和公式及其推导 1.等比数列前n项和公式,答案,na1,(2)注意:应用该公式时,一定不要忽略q1的情况.,2.等比数列前n项和公式的推导 推导1 求等差数列前n项和用的是倒序相加法,对于等比数列an,若q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,。
4、第一章 解三角形,1.2 应用举例(一),1.会用正弦、余弦定理解决生产实践中有关不可到达点距离的测量问题. 2.培养提出问题、正确分析问题、独立解决问题的能力,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 常用角,试画出“北偏东60”和“南偏西45”的示意图,答案,梳理,在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空: (1)方向角 指北或指南方向线与目标方向所成的小于_度的角 (2)仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线_时叫仰角,目标视线在水平线。
5、第一章 1.1 正弦定理和余弦定理,1.1.1 正弦定理(一),1.掌握正弦定理的内容及其证明方法. 2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 正弦定理的推导,答案,思考2,答案,梳理,知识点二 正弦定理的呈现形式,ABC外接圆的半径,一般地,把三角形的三个角及其对边分别叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 .,知识点三 解三角形,元素,解三角形,题型探究,例1 在钝角ABC中,证明正弦定理.,如图,过C作CDAB,垂足为D,D是BA延长线上一点, 。
6、2.1 数 列(一),第2章 数 列,1.理解数列及其有关概念. 2.理解数列的通项公式,并会用通项公式写出数列的任意一项. 3.对于比较简单的数列,会根据其前n项写出它的通项公式.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识点一 数列的概念 1.数列与数列的项 按照一定次序排列的一列数称为 ,数列中的每个数都叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做 项),排在第二位的数称为这个数列的第2项,排在第n位的数称为这个数列的第 项. 2.数列的表示方式 数。
7、第1章 解三角形,1.1 正弦定理(二),1.能根据条件,判断三角形解的个数. 2.能从实际问题中抽象出三角形问题并予以解决. 3.能利用正弦定理、三角变换解决较为复杂的三角形问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 正弦定理的常见变形,abc,2R,2Rsin A,2Rsin B,2Rsin C,知识点二 判断三角形解的个数,思考1,答案,在ABC中,a9,b10,A60,判断三角形解的个数.,梳理 已知三角形的两边及其中一边的对角,三角形解的个数并不一定唯一.,如果两个三角形有两边及其夹角分别相等,则这两个三角形全等.即三角形的两边及其。
8、第1课时 余弦定理及其直接应用,第二章 1.2 余弦定理,学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法. 2.会运用余弦定理解决两类基本的解三角形问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 余弦定理,答案,思考1 根据勾股定理,若在ABC中,C90,则c2a2b2a2b22abcos C 试验证式对等边三角形还成立吗?你有什么猜想?,答案 当abc时,C60, a2b22abcos Cc2c22cccos 60c2, 即式仍成立,据此猜想,对一般ABC,都有c2a2b22abcos C.,思考2 在c2a2b22abcos C中,abcos C能解释为哪两个向量的数量积?你能由此证。
9、第2课时 余弦定理的变形及应用,第二章 1.2 余弦定理,学习目标 1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦定理、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 余弦定理及其推论,1.a2 ,b2 ,c2 .2.cos A ;cos B ;cos C . 3.在ABC中,c2a2b2C为 ;c2a2b2C为 ;c2a2b2 C为 .,b2c22bccos A,c2a22cacos B,a2b22abcos C,直角,钝角,锐角,知识点二 余弦定理及其变形的使用,思考 在解题过程中我们会遇到各种各样的条件,那么。
10、第1章 解三角形,1.1 正弦定理(一),1.掌握正弦定理的内容及其证明方法. 2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 正弦定理的推导,答案,思考2,答案,梳理,知识点二 正弦定理的呈现形式,ABC外接圆的半径,解斜三角形是指由六个元素(三条边和三个角)中的 元素(至少有一个是 ),求其余三个未知元素的过程.,知识点三 解三角形,三个,边,题型探究,例1 在钝角ABC中,证明正弦定理.,如图,过C作CDAB,垂足为D,D是BA延长线 上一点, 根据正弦函数的定义知:。
11、第一章 1.1 正弦定理和余弦定理,1.1.2 余弦定理(二),1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形 状判断等问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 已知两边及其中一边的对角解三角形,思考,能在余弦定理b2a2c22accos B中,已知三个量ACb,ABc,cos B,代入后得到关于a的一元二次方程,解此方程即可,答案,梳理 已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法如下:,(1)。
12、第一章 1.1 正弦定理和余弦定理,1.1.1 正弦定理(二),1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题. 2.能根据条件,判断三角形解的个数. 3.能利用正弦定理、三角变换解决较为复杂的三角形问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 正弦定理的常见变形,abc,2R,2Rsin A,2Rsin B,2Rsin C,4.sin A ,sin B ,sin C .,知识点二 判断三角形解的个数,思考1,答案,在ABC中,a9,b10,A60,判断三角形解的个数.,故对应的钝角B有90b,则有AB,所。
13、第1章 解三角形,1.3 正弦定理、余弦定理的应用(二),1.会运用测仰角(或俯角)解决一些有关底部不可到达的物体的高度测量问题. 2.会用测方位角解决立体几何中求高度问题. 3.进一步培养学习数学、应用数学的意识.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 测量仰角(或俯角)求高度问题,思考,答案,如图,AB是底部B不可到达的一个建筑物,A为建筑物的最高点,如果能测出点C,D间的距离m和由C点,D点观察A的仰角,怎样求建筑物的高度AB(已知测角仪器的高是h)?,梳理 问题的本质用、m表示AE的长,所得结果再加上h.,如图,一。
14、第1章 解三角形,1.3 正弦定理、余弦定理的应用(一),1.会用正弦、余弦定理解决生产实践中有关不可到达点距离的测量问题. 2.培养提出问题、正确分析问题、独立解决问题的能力.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 常用角,思考,答案,试画出“北偏东60”和“南偏西45”的示意图.,梳理 在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空: (1)方向角 指北或指南方向线与目标方向所成的小于 度的角. (2)仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线 时叫仰角,。
15、第1章 解三角形,1.2 余弦定理(二),1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解决简单的实际问题. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 已知两边及其中一边的对角解三角形,思考,答案,能.在余弦定理b2a2c22accos B中,已知三个量ACb,ABc,cos B,代入后得到关于a的一元二次方程,解此方程即可.,梳理 已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法如下:,(1)当A为。
16、第1章 解三角形,1.2 余弦定理(一),1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法. 2.会运用余弦定理解决两类基本的解三角形问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 余弦定理的推导,思考1,答案,根据勾股定理,若ABC中,C90,则c2a2b2a2b22abcos C. 试验证式对等边三角形还成立吗?你有什么猜想?,当abc时,C60, a2b22abcos Cc2c22cccos 60c2, 即式仍成立,据此猜想,对一般ABC,都有c2a2b22abcos C.,思考2,答案,在c2a2b22abcos C中,abcos C能解释为哪两个向量的数量积?你能由此证明思考1的猜。