第二章 2.2 等差数列,2.2.2 等差数列的前n项和(二),学习目标 1.进一步熟练掌握等差数列的通项公式和前n项和公式. 2.会解等差数列前n项和的最值问题. 3.理解an与Sn的关系,能根据Sn求an.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 数列中an与Sn的关系,思考
人教A版高中数学必修五2.5 等比数列的前n项和一课件Tag内容描述:
1、第二章 2.2 等差数列,2.2.2 等差数列的前n项和(二),学习目标 1.进一步熟练掌握等差数列的通项公式和前n项和公式. 2.会解等差数列前n项和的最值问题. 3.理解an与Sn的关系,能根据Sn求an.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 数列中an与Sn的关系,思考 已知数列an的前n项和Snn2,怎样求a1,an?,答案 a1S11; 当n2时,anSnSn1n2(n1)22n1, 又n1时也适合上式, 所以an2n1,nN.,梳理 对任意数列an,Sn与an的关系可以表示为,S1,SnSn1,知识点二 等差数列前n项和的最值,答案 由二次函数的性质可以得出: 当a10,d0时,Sn先减后。
2、4 4. .3.23.2 等比数列的前等比数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等比数列前等比数列前 n n 项和公式项和公式 学习目标 1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式 解决有关等比数列的一些简单问题 知识点一 等比数列的前 n 项和公式 已知量 首项、公比与项数 首项、公比与末项 求和公式 Sn a11qn 1q q1,。
3、第二章 2.2 等差数列,2.2.2 等差数列的前n项和(一),学习目标 1.掌握等差数列前n项和公式及其获取思路. 2.熟知公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等差数列的前n项和公式,思考 高斯用123100(1100)(299)(5051)10150迅速求出了等差数列前100项的和.但如果是求123n,不知道共有奇数项还是偶数项怎么办?,答案 不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒。
4、2.2 等差数列 2.2.2 等差数列的前n项和(二),学习目标 1.掌握等差数列与其前n项和Sn有关的一些性质,能熟练运用这些性质解题. 2.掌握可以转化为等差数列的数列求和问题. 3.会用等差数列的相关知识解决简单的实际问题.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 如果已知数列an的前n项和Sn的公式,如何求它的通项公式?如果一个数列的前n项和的公式是Snan2bnc(a,b,c为常数),那么这个数列一定是等差数列吗? 答 若n1时,a1S1, 若n2时,anSnSn1, 对于Snan2bnc(a,b,c为常数。
5、2.3 等差数列的前n项和(二),第二章 数列,1.进一步熟练掌握等差数列的通项公式和前n项和公式. 2.会解等差数列前n项和的最值问题. 3.理解an与Sn的关系,能根据Sn求an.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 数列中an与Sn的关系,已知数列an的前n项和Snn2,怎样求a1,an?,答案,a1S11; 当n2时,anSnSn1n2(n1)22n1, 又n1时也适合上式,所以an2n1,nN*.,对任意数列an,Sn与an的关系可以表示为,梳理,S1,SnSn1,知识点二 等差数列前n项和的最值,由二次函数的性质可以得出:当a10,d0时,Sn先减后增,有最小值;当。
6、2.2 等差数列 2.2.2 等差数列的前n项和(一),学习目标 1.体会等差数列前n项和公式的推导过程. 2.掌握等差数列前n项和公式. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.设梯形的上底、下底、高分别为a,b,h,把两个相同的梯形一个倒置并成平行四边形,则梯形的面积 为_.,2.把二次函数y2x24x3化成ya(xh)2k的形式是 ,当x 时,y有最 值 . 解析 y2x24x32(x1)25. x1时,y有最大值5.,y2(x1)25,1,大,。
7、2.3 等差数列的前n项和(一),第二章 数列,1.掌握等差数列前n项和公式及其获取思路. 2.经历公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思. 3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等差数列前n项和公式的推导,高斯用123100(1100)(299)(5051)10150迅速求出了等差数列前100项的和但如果是求123n,不知道共有奇数项还是偶数项怎么办?,答案,不知道共有奇数项还是偶数项导致不能配对但我们可以采用倒序相加来。
8、第二章 2.3.1 等比数列,第1课时 等比数列的概念及通项公式,学习目标 1.理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的概念,思考 观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,1,1,1,1,; 1,1,1,1,.,答案 从第2项起,每一项与它的前一项的比是同一个常数.,梳理 等比数列的概念和特点. (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的 都等于 常数,那么这个数列叫做等比。
9、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。
10、第一章 数列,1.3.2 等比数列的前n项和(一),1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,梳理,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,知识点二 等比数列的前n项和公。
11、2.3.3 等比数列的前n项和(二),第2章 2. 3 等比数列,1.熟练应用等比数列前n项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n项和有关的问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的前n项和的变式,答案,na1,当公比q1时,因为a10,所以Snna1是n的正比例函数(常数项为0的一次函数).,答案,AqnA,思考 在数列an中,an1can(c为非零常数)且前n项和Sn3n1k,则实数k_.,答案, 1 3,解析 由题意知an是等比数列, 3n的系数与常数项互为相反数, 而3n的系数为 1。
12、2.3.3 等比数列的前n项和(一),第2章 2. 3 等比数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列前n项和公式及其推导 1.等比数列前n项和公式,答案,na1,(2)注意:应用该公式时,一定不要忽略q1的情况.,2.等比数列前n项和公式的推导 推导1 求等差数列前n项和用的是倒序相加法,对于等比数列an,若q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,。
13、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(二),学习目标 1.熟练应用等比数列的前n项和公式的有关性质解题. 2.会用错位相减法求和.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式的函数特征,思考 若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n+11呢?,答案 当Sn2n1时,,当Sn2n+11时,,当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列的前n项和的性质,思考 若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案 设an的公比为q,则 。
14、2.5 等比数列的前 n 项和(二)课时目标1熟练应用等比数列前 n 项和公式的有关性质解题2能用等比数列的前 n 项和公式解决实际问题1等比数列a n的前 n 项和为 Sn,当公比 q1 时,S n ;当a11 qn1 q a1 anq1 qq1 时,S nna 1.2等比数列前 n 项和的性质:(1)连续 m 项的和 (如 Sm、S 2mS m、S 3mS 2m),仍构成等比数列(注意:q1 或 m为奇数)(2)Smn S mq mSn(q 为数列 an的公比)(3)若a n是项数为偶数、公比为 q 的等比数列,则 q.S偶S奇3解决等比数列的前 n 项和的实际应用问题,关键是在实际问题中建立等比数列模型一、选择题1在各项都为正数的。
15、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(一),学习目标 1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式,思考 对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案 比较两式易知,两式相减能消去同类项,解出S64,,梳理 设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn。
16、2.5 等比数列的前 n 项和(一)课时目标1掌握等比数列前 n 项和公式的推导方法2会用等比数列前 n 项和公式解决一些简单问题1等比数列前 n 项和公式:(1)公式:S nError!.(2)注意:应用该公式时,一定不要忽略 q1 的情况2若a n是等比数列,且公比 q1,则前 n 项和 Sn (1q n)A( qn1)其中a11 qA .a1q 13推导等比数列前 n 项和的方法叫错位相减法一般适用于求一个等差数列与一个等比数列对应项积的前 n 项和一、选择题1设 Sn为等比数列a n的前 n 项和,8a 2a 50,则 等于 ( )S5S2A11 B5C8 D11答案 D解析 由 8a2a 50 得 8a1qa 1q40,q2,则 11.S5。
17、2.5 等比数列的前n项和,第二章,第2课时 数列求和,推导等比数列前n项和公式的方法称为_法 答案 错位相减,1.分组转化求和法 如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解,3错位相减法 若数列an为等差数列,数列bn是等比数列,由这两个数列的对应项乘积组成的新数列为anbn,当求该数列的前n项的和时,常常采用将anbn的各项乘以公比q,然后错位一项与anbn的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法,分组转化求和,。
18、2.5 等比数列的前n项和(一),第二章 数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得 Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,梳理,当q1时,由于a1a2an,所以Snna1.,。