2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)

上传人:可** 文档编号:104749 上传时间:2019-12-05 格式:DOCX 页数:7 大小:150.37KB
下载 相关 举报
2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)_第1页
第1页 / 共7页
2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)_第2页
第2页 / 共7页
2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)_第3页
第3页 / 共7页
2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)_第4页
第4页 / 共7页
2.3.1等比数列的概念(第1课时)等比数列的概念及通项公式 学案(含答案)_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、2.3等比数列第1课时等比数列的概念及通项公式学习目标1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程知识点一等比数列的概念1定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q0)2递推公式形式的定义:q(n1).3等比数列各项均不能为0.知识点二等比中项与等差中项的异同对比项等差中项等比中项定义若a,A,b成等差数列,则A叫做a与b的等差中项若a,G,b成等比数列,则G叫做a与b的等比中项定义式AabA公式AG个数a与b的等差中项唯一a与b的等

2、比中项有两个,且互为相反数备注任意两个数a与b都有等差中项只有当ab0时,a与b才有等比中项知识点三等比数列的通项公式若等比数列an的首项为a1,公比为q,则ana1qn1(nN*)1若an1qan,nN*,且q0,则an是等比数列()2任何两个数都有等比中项()3等比数列1,中,第10项为.()4V常数列既是等差数列,又是等比数列()题型一等比数列的判定命题角度1已知数列前若干项判断是否为等比数列例1判断下列数列是否为等比数列(1)1,3,32,33,3n1,;(2)1,1,2,4,8,;(3)a1,a2,a3,an,.解(1)记数列为an,显然a11,a23,an3n1,.3(n2,nN*

3、),数列为等比数列,且公比为3.(2)记数列为an,显然a11,a21,a32,12,此数列不是等比数列(3)当a0时,数列为0,0,0,是常数列,不是等比数列;当a0时,数列为a1,a2,a3,a4,an,显然此数列为等比数列,且公比为a.反思感悟判定等比数列,要抓住3个要点:从第二项起要判定每一项,不能有例外每一项与前一项的比是同一个常数,且不能为0.跟踪训练1下列各组数成等比数列的是()1,2,4,8;,2,2,4;x,x2,x3,x4;a1,a2,a3,a4.A BC D答案C解析显然是等比数列;由于x可能为0,不是;a不能为0,符合等比数列定义,故是命题角度2已知递推公式判断是否为等

4、比数列例2已知数列an满足a11,an12an1.(1)证明:数列an1是等比数列;(2)求数列an的通项公式(1)证明an12an1,an112(an1)由a11,知a110,从而an10.2(nN*)数列an1是等比数列(2)解由(1)知an1是以a112为首项,2为公比的等比数列an122n12n.即an2n1(nN*)反思感悟等比数列的判定方法(1)定义法:q(n2,q是不为0的常数)an是公比为q的等比数列(2)等比中项法:aan1an1(n2,an,an1,an1均不为0)an是等比数列跟踪训练2数列an满足a11,且an3an12n3(n2,3,)(1)求a2,a3,并证明数列a

5、nn是等比数列;(2)求数列an的通项公式解(1)a23a12234,a33a223315.又a112,3(n1,2,3,)数列ann是以2为首项,3为公比的等比数列(2)由(1)知ann23n1,ann23n1(nN*)题型二等比数列通项公式的应用例3在等比数列an中(1)已知a24,a5,求an;(2)已知a3a636,a4a718,an,求n.解(1)设等比数列的公比为q,则解得ana1qn1(8)n1n4(nN*)(2)设等比数列an的公比为q.a4a7a3qa6q(a3a6)q,q.a4a718,a4(1q3)18.a416,ana4qn416n4.由16n4,得n45,n9.反思感

6、悟等比数列通项公式及应用应注意两点(1)a1和q是等比数列的基本元素,只要求出这两个基本元素,其余的元素便可求出(2)等比数列的通项公式涉及4个量a1,an,n,q,知任意三个就可以求出另外一个跟踪训练3在等比数列an中:(1)已知a13,q2,求a6;(2)已知a320,a6160,求an.解(1)由等比数列的通项公式得,a63(2)6196.(2)设等比数列的公比为q,则解得所以ana1qn152n1,nN*.方程的思想在等比数列中的应用典例1有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数考点等比数列的性质题

7、点等比数列的性质的其他应用问题解方法一设这四个数依次为ad,a,ad,由条件得解得或所以当a4,d4时,所求的四个数为0,4,8,16;当a9,d6时,所求的四个数为15,9,3,1.故所求的四个数为0,4,8,16或15,9,3,1.方法二设这四个数依次为a,a,aq(q0),由条件得解得或当a8,q2时,所求的四个数为0,4,8,16;当a3,q时,所求的四个数为15,9,3,1.故所求的四个数为0,4,8,16或15,9,3,1.典例2设四个实数依次成等比数列,其积为210,中间两项的和是4,则这四个数为多少?解设这四个数依次为,a,aq,aq2(q0),根据题意得解得q2或,当q2时,

8、a4,所求四个数依次为2,4,8,16.当q时,a8,所求四个数依次为16,8,4,2,综上,这四个数依次为2,4,8,16或16,8,4,2.素养评析(1)解决这类题目通常用方程的思想,列方程首先应引入未知数,三个数或四个数成等比数列的设元技巧:若三个数成等比数列,可设三个数为,a,aq或a,aq,aq2(q0)若四个数成等比数列,可设为,a,aq,aq2或,aq,aq3(q0)(2)像本例,明确运算对象,选择运算方法,求得运算结果充分体现数学运算的数学核心素养.1等比数列an的公比|q|1,an中有连续四项在集合54,24,18,36,81中则q等于()A B. C D.答案C解析an中的

9、项必然有正有负,q0.又|q|1,|an|递增或递减由此可得an的连续四项为24,36,54,81.q.2等比数列x,3x3,6x6,的第4项等于()A24 B0 C12 D24答案A解析由题意知(3x3)2x(6x6),即x24x30,解得x3或x1(舍去),所以等比数列的前3项是3,6,12,则第4项为24.3若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为()A4 B8 C6 D32答案C解析由等比数列的通项公式得,12842n1,2n132,所以n6.445和80的等比中项为_答案60或60解析设45和80的等比中项为G,则G24580,G60.5若an为等比数列,且3a4a62a5,则公比是_答案1或3解析设公比为q(q0),则3a1q3a1q52a1q4,因为a1q30,所以q22q30,解得q1或q3.1等比数列的判断或证明(1)利用定义:q(与n无关的常数)(2)利用等比中项:aanan2(nN*,且数列各项均不为零)2两个同号的实数a,b才有等比中项,而且它们的等比中项有两个(),而不是一个(),这是容易忽视的地方3等比数列的通项公式ana1qn1共涉及a1,q,n,an四个量,已知其中三个量可求得第四个量

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 苏教版 > 必修5