一元二次方程一:概念及一元二次方程的解法一元二次方程一:概念及一元二次方程的解法 知识点一:一元二次方程的定义知识点一:一元二次方程的定义 一元二次方程的三要素:只含有 1 未知数 未知数的最高次数是 2 整式方程 只有同时满足以上三个条件,4.34.3 等比数列等比数列 4 4. .3.13.1
9.1 数列的概念 一学案含答案Tag内容描述:
1、一元二次方程一:概念及一元二次方程的解法一元二次方程一:概念及一元二次方程的解法 知识点一:一元二次方程的定义知识点一:一元二次方程的定义 一元二次方程的三要素:只含有 1 未知数 未知数的最高次数是 2 整式方程 只有同时满足以上三个条件。
2、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 学习目标 1.通过实例, 理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数 列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形 知识点一 等比数列的概念 1定义:一般地,如果一个数列从第 2 项。
3、4.24.2 等差数列等差数列 4 4. .2.12.1 等差数列的概念等差数列的概念 第第 1 1 课时课时 等差数列的概念及通项公式等差数列的概念及通项公式 学习目标 1.理解等差数列、等差中项的概念.2.掌握等差数列的通项公式,并能运用通项公 式解决一些简单的问题.3.掌握等差数列的判断与证明方法 知识点一 等差数列的概念 一般地,如果一个数列从第 2 项起,每一项与它的前一项的差都等于同。
4、4.14.1 数列的概念数列的概念 第第 1 1 课时课时 数列的概念及通项公式数列的概念及通项公式 学习目标 1.理解数列的有关概念与数列的表示方法.2.掌握数列的分类,了解数列的单调 性.3.理解数列的通项公式,并会用通项公式写出数列的任一项.4.能根据数列的前几项写出数 列的一个通项公式 知识点一 数列及其有关概念 1一般地,我们把按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这。
5、 5.1 平面向量的概念及线性运算平面向量的概念及线性运算 最新考纲 考情考向分析 1.了解向量的实际背景 2.理解平面向量的概念, 理解两个向量相等的含义 3.理解向量的几何表示 4.掌握向量加法、 减法的运算, 并理解其几何意义 5.掌握向量数乘的运算及其几何意义,理解两个向 量共线的含义 6.了解向量线性运算的性质及其几何意义. 主要考查平面向量的线性运算(加法、减 法、数乘向量)及其几何意义、共线向量 定理常与三角函数、 解析几何交汇考查, 有时也会有创新的新定义问题;题型以 选择题、填空题为主,属于中低档题 目偶尔会在解答。
6、 3.1 导数的概念及运算导数的概念及运算 最新考纲 考情考向分析 1.了解导数概念的实际背景 2.通过函数图象直观理解导数的几何意义 3.能根据导数定义求函数 yc(c 为常数), y x,yx2,yx3,y1 x,y x的导数 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,(理)能求简 单的复合函数(仅限于形如 f(axb)的复合函 数)的导数. 导数的概念和运算是高考的必考 内容,一般渗透在导数的应用中 考查;导数的几何意义常与解析 几何中的直线交汇考查;题型为 选择题或解答题的第(1)问,低档 难度. 1导数与导函数的概念 (1)一般。
7、第二章 数 列2.1 数列的概念与简单表示法(一)课时目标1理解数列及其有关概念;2理解数列的通项公式,并会用通项公式写出数列的任意一项;3对于比较简单的数列,会根据其前 n 项写出它的通项公式1按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第 1 项(通常也叫做首项) ,排在第二位的数称为这个数列的第 2 项,排在第 n 位的数称为这个数列的第 n 项2数列的一般形式可以写成 a1,a 2,a n,简记为a n3项数有限的数列称有穷数列,项数无限的数列叫做无。
8、2.1函数的概念2.1.1函数的概念和图象(一)学习目标1.理解函数、定义域的概念.2.了解构成函数的三要素.3.正确使用函数符号,会求简单函数的定义域、函数值知识点一函数的定义设A,B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为yf(x),xA.提示(1)集合的特殊性:集合A和B不能为空集,并且必须为数集(2)对应的方向性:其方向性是指对A中的任何一个数x,在集合B中都有数f(x)与之对应,先是集合A,其次是集合B.(3)对应的唯一性:是指与。
9、 9.1 直线的方程直线的方程 最新考纲 考情考向分析 1.在平面直角坐标系中,结合具体图形,确定直线 位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的 直线斜率的计算公式. 3.掌握确定直线位置的几何要素,掌握直线方程的 几种形式(点斜式、斜截式、截距式、两点式及一般 式),了解斜截式与一次函数的关系. 以考查直线方程的求法为主,直线的 斜率、倾斜角也是考查的重点题型 主要在解答题中与圆、圆锥曲线等知 识交汇出现,有时也会在选择、填空 题中出现. 1直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准。
10、1数系的扩充与复数的引入11数的概念的扩展12复数的有关概念(一)学习目标1.了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件知识点一复数的概念及复数的表示思考为解决方程x22在有理数范围内无根的问题,数系从有理数扩充到实数;那么怎样解决方程x210在实数系中无根的问题呢?答案设想引入新数i,使i是方程x210的根,即ii1,方程x210有解,同时得到一些新数梳理复数及其表示(1)复数的定义规定i21,其中i叫作虚数单位;。
11、3等比数列31等比数列第1课时等比数列的概念及通项公式学习目标1.通过实例,理解等比数列的概念并学会简单应用.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程知识点一等比数列的概念1文字定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母q表示(q0)2递推公式形式的定义:q(n2,nN)(或q,nN)3等比数列各项均不能为0.思考下列所给的三个数列是等比数列的是_(填写序号)2,2,2,2,;0,1,2,4,8,;,2,2,4,.答案知识点二等。
12、2等差数列21等差数列第1课时等差数列的概念及通项公式学习目标1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题知识点一等差数列的定义一般地,如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,公差通常用字母d表示,可正可负可为零(1)求公差d时,可以用danan1(n2,nN)或dan1an(nN)(2)对于公差d,当d0时,数列为常数列;当d0时,数列为递增数列;当d0,则该数列为递增数列()4若三个数a,b,c满。
13、第2课时等比数列的性质学习目标1.灵活应用等比数列的通项公式推广形式及变形.2.理解等比数列的有关性质,并能用相关性质简化计算知识点一等比数列通项公式的推广和变形等比数列an的公比为q,则ana1qn1amqnmqn其中当中m1时,即化为.当中q0且q1时,yqx为指数型函数知识点二等比数列常见性质(1)对称性:a1ana2an1a3an2amanm1(nm且n,mN*);(2)若klmn(k,l,m,nN*),则akalaman;(3)若m,p,n成等差数列,则am,ap,an成等比数列;(4)在等比数列an中,连续取相邻k项的和(或积)构成公比为qk(或)的等比数列;(5)若an是等比数列,公比为q,则数。
14、 6.1 数列的概念与简单表示法数列的概念与简单表示法 最新考纲 考情考向分析 1.了解数列的概念和几种简单的表示方法 (列表、图象、通项公式). 2.了解数列是自变量为正整数的一类特殊 函数. 以考查 Sn与 an的关系为主,简单的递推关系也 是考查的热点 本节内容在高考中以选择、 填空 的形式进行考查,难度属于低档. 1数列的定义 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项 2数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系 分类 递增数列 an1_an 其中。
15、2.3等比数列第1课时等比数列的概念及通项公式学习目标1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程知识点一等比数列的概念1定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q0)2递推公式形式的定义:q(n1).3等比数列各项均不能为0.知识点二等比中项与等差中项的异同对比项等差中项等比中项定义若a,A,b成等差数列,则A叫做a与b的等差中项若a,G,b成等比数列,则G叫做a与b的等比。
16、2.2等差数列第1课时等差数列的概念及通项公式学习目标1.理解等差数列的定义,会用定义判断和证明一个数列是否为等差数列.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念知识点一等差数列的概念一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,可正可负可为零知识点二等差中项的概念如果三个数a,A,b组成等差数列,那么A叫做a与b的等差中项,且A.知识点三等差数列的通项。
17、1数列11数列的概念学习目标1.了解数列及其有关概念.2.理解数列的通项公式,并会用通项公式写出数列的任意一项.3.对于比较简单的数列,会根据其前几项写出它的一个通项公式知识点一数列的概念及表示方法1数列与数列的项按照一定次序排列的一列数叫作数列,数列中每一个数叫作这个数列的项数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫作首项),排在第二位的数称为这个数列的第2项,排在第n位的数称为这个数列的第n项2数列的表示方式数列的一般形式可以写成a1,a2,an,简记为数列an,an是数列的第n项,也叫。
18、9.1数列的概念 (二)基础过关1在递减数列an中,ankn(k为常数),则实数k的取值范围是()ARB(0,)C(,0) D(,0答案C解析an是递减数列,an1ank(n1)knk0.2已知数列an的首项为a11,且满足an1an,则此数列的第4项是()A1B.C.D.答案B3数列an中,a11,对所有的n2,都有a1a2a3ann2,则a3a5等于()A.B.C.D.答案C解析a1a2a332,a1a222,a1a2a3a4a552,a1a2a3a442,则a3,a5.故a3a5.4由1,3,5,2n1,构成数列an,数列bn满足b12,当n2时,bnabn1,则b6的值是()A9B17C33D65答案C解析bnabn1,b2ab1a23,b3。
19、9.1数列的概念 (二)学习目标1.理解数列的几种表示方法,能从函数的观点研究数列.2.理解递推公式的含义,能根据递推公式求出数列的前几项知识链接1数列中的项与数集中的元素进行对比,数列中的项具有的性质有_答案(1)确定性,(2)可重复性,(3)有序性, (4)数列中的每一项都是数2数列的项与对应的序号能构成函数关系,类比函数的表示方法,想一想数列有哪些表示方法?答案数列的一般形式可以写成:a1,a2,a3,an,.除了列举法外,数列还可以用公式法、列表法、图象法来表示预习导引1数列的函数性质(1)数列是一种特殊的函数,只不过是定义在。
20、9.1数列的概念 (一)学习目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n项写出它的通项公式知识链接下列4个结论正确的有_(1)任何一个函数都对应着一个映射,任何一个映射也对应着一个函数;(2)任何一个函数都有一个确定的函数表达式;(3)函数的表示方法有:列表法、解析法、图象法;(4) 对于函数f(x),x1,x2为函数f(x)定义域内任意两个值,当x1x2时,f(x1)f(x2),则f(x)是增函数答案(3) 解析函数是非空数集A到非空数集B的一个映射,而映射中的A、B并不一定是数。