2020年中考数学二轮复习专题二阅读理解问题

中考数学二轮复习重要考点精析 开放型题型 一、中考专题诠释 开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中根据其特征大致可分为:条件开放型、结论开放型、方法

2020年中考数学二轮复习专题二阅读理解问题Tag内容描述:

1、中考数学二轮复习重要考点精析开放型题型一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类 二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构。

2、专题三实际应用题类型一 二元一次方程组的应用 (5年2考)(2019济宁模拟)用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1 340元,设购买彩色地砖x块,单色地砖y块,则根据题意可列方程组为 【分析】根据“单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1 340元”,即可得出关于x,y的二元一次方程组【自主解答】1(2019德州中考)孙子算经中有一道题,原文是:“今有木,不知长短引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意。

3、专题四几何综合题类型一 几何的全等综合 (5年2考)(2017济宁中考)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想MBN的度数是多少,并证明你的结论(2)将图1中的三角形纸片BMN剪下,如图2.折叠该纸片,探究MN与BM的数量关系写出折叠方案,并结合方案证明你的结论【分析】(1)猜想:MBN30.只要证明ABN是等边三角形即可(2)结论:MNBM.折纸方案:过M点折叠BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠。

4、专题一探索规律问题类型一 数式规律 (5年2考) 观察“田”字中各数之间的关系:则c的值为_【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可【自主解答】 1(2019改编题)观察下列等式:212,224,238,2416,2532,2664,根据这个规律,则2122232422 019的末位数字是( )A2 B4 C0 D62(2018德州中考)我国南宋数学家杨辉所著的详解九章算术一书中,用下图的三角形解释二项式(ab)n的展开式的各项系数,此三角形称为“杨辉三角”根据“杨辉三角”请计算(ab)8的展开式中从左起。

5、2020中考数学培优专题:代数最值问题(含答案)一、填空题(共有4道小题)1.二次函数的最小值是 2.若实数满足,则的最小值是 3.已知反比例函数,当时,y的最大值是 。4.当多项式取最小值时,多项式的值为_二、计算题(共有1道小题)5.将函数转化为顶点式,并指出其对称轴和顶点坐标。三、解答题(共有10道小题)6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。(1)设每件衬衫降价x元,平。

6、2020中考数学培优专题:几何最值问题(含答案) 1.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为( )A4dm B2dm C2dm D4dm2.如图,ABC的面积等于6,边AC=3.现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处。点P在直线AD上,则线段BP的长不可能是()A.3B.4C.5D.6ABC3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面。

7、专题五反比例函数的综合类型一 反比例函数与一次函数的综合(2019椒江区一模)如图,已知一次函数与反比例函数的图象交于点A(4,1)和B(a,2)(1)求反比例函数的解析式和点B的坐标(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【分析】(1)根据反比例函数图象经过点A(4,1),可以求得反比例函数的解析式,再根据点B在反比例函数图象上,即可求得点B的坐标;(2)根据函数图象可以直接写出当x在什么范围内时,一次函数的值大于反比例函数的值【自主解答】1(2017嘉兴)如图,一次函数yk1xb(k10)与反比例函数y(k20)的图象交。

8、核心母题二图形变换【核心母题1】(2017嘉兴)一副含30和45角的三角板ABC和DEF叠合在一起,边BC与EF重合,BCEF12 cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是_现将三角板DEF绕点G按顺时针方向旋转(如图2),在CGF从0到60的变化过程中,点H相应移动的路径长为_(结果保留根号)【母题分析】作HMBC于M,设HMCMa.在RtBHM中,BH2HM2a,BMa,根据BMMFBC,可得aa12,推出a66,推出BH2a1212.当DGAB时,易证GH1DF,此时BH1的值最小,易知BH1BKKH133,当旋转角为60时,F与H2重合,易知BH26,观察图可知,在CGF从0到60的变化过。

9、2021 年年中考中考二轮复习与线段长度相关的最值问题专题突破训练二轮复习与线段长度相关的最值问题专题突破训练 1如图,MN 为O 的直径,A、B 是O 上的两点,过 A 作 ACMN 于点 C,过 B 作 BDMN 于点 D,P 为 DC 上的任意一点,若 MN20,AC8,BD6,则 PA+PB 的最小值是( ) A20 B14 2 C14 D12 2 2如图,已知正方形 ABCD 的边长为。

10、2021 年春中考二轮复习问题发现探究拓展综合型压轴题专题突破训练年春中考二轮复习问题发现探究拓展综合型压轴题专题突破训练 1 1 【阅读材料】 (1)小明遇到这样一个问题: 如图 1,点 P 在等边三角形 ABC 内, 且APC150, PA6, PC8求 PB 的长 小明发现,把PAC 绕点 A 顺时针方向旋转 60得到ADB,连接 DP,由旋转性质,可证ACP ABD,得 PCBD;由已知A。

11、2021 年年中考中考数学二轮复习利用函数思想求最值问题专题突破训练数学二轮复习利用函数思想求最值问题专题突破训练 1已知 x=m 是一元二次方程 x2+2x+n-3=0 的一个根,则 m+n 的最大值等于( ) A13 4 B4 C 15 4 D 13 4 2如图,平面直角坐标系中,已知(2,0)A,(4,0)B,P为y轴正半轴上一个动点,将线段PA绕点P逆 时针旋转90,点A的对应点为Q,则。

12、几何压轴题型类型一 动点探究型在菱形ABCD中,ABC60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点E的位置随着点P的位置变化而变化(1)如图,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是_,CE与AD的位置关系是_;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图,图中的一种情况予以证明或说理);(3)如图,当点P在线段BD的延长线上时,连接BE,若AB2,BE2,求四边形ADPE的面积【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明AB。

13、核心母题一最值问题(2019台州模拟)如图,在平面直角坐标系xOy中,直线yx4与坐标轴交于A,B两点,OCAB于点C,P是线段OC上的一个动点,连结AP,将线段AP绕点A逆时针旋转45,得到线段AP,连结CP,则线段CP的最小值为( )A22 B1C21 D2【母题分析】由点P的运动确定P的运动轨迹是与x轴垂直的一段线段MN,当线段CP与MN垂直时,线段CP的值最小【母题解答】【思想方法】(1)最值(或最短路径)问题的背景来源主要有:角、等腰(边)三角形、菱形、正方形以及圆等从内容上看,还会引申到“两线段差最大”问题、三角形(四边形)的周长最小问题、面积最大等除。

14、专题一探索规律问题类型一 数式规律(2016济宁中考)按一定规律排列的一列数:,1,1,请你仔细观察,按照此规律方框内的数字应为_【分析】先将第一个1化为,第二个1化为,再观察其规律即可【自主解答】1(2019改编题)观察下列等式:212,224,238,2416,2532,2664,根据这个规律,则2122232422 019的末位数字是( B )A0 B2C4 D62(2015济宁中考)若122232127;(122232)(342452)2311;(122232)(342452)(562672)3415;则(122232)。

15、专题二尺规作图类型一 尺规作图命题角度尺规作图及判定(2019慈溪模拟)如图,点P是ABC的BC边上一点,作以点P为圆心,且与AB边相切的圆,下列四种作法中错误的是( )【分析】利用基本作图,根据线段的垂直平分线和切线的判定方法可对A,B,C进行判断;利用圆周角定理和切线的判定可对D进行判断【自主解答】1(2019柯桥区模拟)如图,锐角ABC中,BCABAC,求作一点P,使得BPC与A互补,甲、乙两人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于点P,则P即为所求;乙:作BC的垂直平分线和BAC的平分线,两线交于点P,则P即为所求对于甲、乙两人。

16、专题一函数图象问题类型一 实际问题的函数图象分析与判断命题角度由实际问题判断函数图象(2019绍兴模拟)张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )【分析】根据题意和函数图象可以分析出张老师散步情况为:出发刚开始离家的距离在变大,然后较长一段时间离家的距离不变,从而可以解答本题【自主解答】1(2019孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水。

17、专题二阅读理解问题类型一 定义新的运算 (5年1考)(2018德州中考)对于实数a,b,定义运算“”:ab例如43,因为43,所以435.若x,y满足方程组则xy_.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案【自主解答】 定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用,&,等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面。

18、专题二阅读理解问题类型一 定义新的运算 (5年2考) (2018德州中考)对于实数a,b,定义运算“”:ab例如43,因为43,所以435.若x,y满足方程组则xy_.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案【自主解答】 定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用,&,等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面。

19、专题七阅读理解新定义题类型一 几何新定义题型(2017宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形(1)如图1,在半对角四边形ABCD中,BD,CA,求B与C的度数之和;(2)如图2,锐角ABC内接于O,若边AB上存在一点D,使得BDBO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE2EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DGOB于点H,交BC于点G,当DHBG时,求BGH与ABC的面积之比【分析】(1)根据题意得出BD,CA,代入ABCD360求出即可;(2)求出BEDBEO,根据全等得出BDEBOE,连结OC,设EAF,则AFE2EAF。

20、专题二阅读理解问题类型一 定义新的运算(2018德州中考)对于实数a,b,定义运算“”:ab例如43,因为43,所以435.若x,y满足方程组则xy_.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案【自主解答】定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用,&,等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面的1对于两个。

【2020年中考数学二轮复习专】相关DOC文档
标签 > 2020年中考数学二轮复习专题二阅读理解问题[编号:88492]