1828384858687888专题二尺规作图类型一尺规作图命题角度尺规作图及判定(2019慈溪模拟)如图,点P是ABC的BC边上一点,作以点P为圆心,且与AB边相切的圆,下列四种作法中错误2021年中考年中考数学数学精准模拟试卷(二)精准模拟试卷(二)(全卷共4页,三大题,25小题;考试时间:12
中考数学精准模拟试卷Tag内容描述:
1、专题五尺规作图题类型 尺规作图(2019广东)如图,在ABC中,点D是AB边上的一点(1)请用尺规作图法,在ABC内,求作ADE,使ADEB,DE交AC于E;(不要写作法,保留作图痕迹)(2)在(1)的条件下,若2,求的值【分析】 (1)利用基本作图(作一个角等于已知角)作出ADEB;(2)先利用作法得到ADEB,则可判断DEBC,然后根据平行线分线段成比例定理求解【自主解答】1(2019菏泽)如图,四边形ABCD是矩形(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC4,BAC30,求BE的长2(2019济宁)如图,点M和点N在AOB内部(1)请你作出。
2、2021 年中考数学精准模拟试卷年中考数学精准模拟试卷(三三) (全卷共全卷共 4 页,三大题,页,三大题,25 小题;考试时间:小题;考试时间:120 分钟;满分:分钟;满分:150 分分) 一、一、选择题选择题(本大题共本大题共 10 小题,每小题小题,每小题 4 分分,共共 40 分分在每小题给出的四个备选项中,只在每小题给出的四个备选项中,只 有一项最符合题目要求有一项最符合题。
3、专题二计算求解题类型一 与数有关的计算求解题1(2019邢台三模)有规律的一组数,部分数据记录如下:第1个数第2个数第3个数第4个数第8个数第n个数2412863(1)用含n的代数式表示第n个数;(2)若第n个数大于2,求n的最小值;(3)若第m个数比第2m个数小4,求m的值2(2019邯郸广平二模)阅读下面的操作规则:第一次操作:对任意依次排列的两个数,都用左边的数减去右边的数,所得的差写在这两个数之间,得到一组依次排列的新数串;第二次操作:对上一次操作得到的新数串,仍按照第一次操作进行,又得到一组依次排列的新数串;这样依次操作下去(1)对依。
4、核心母题二相似三角形【核心母题】如图,已知:BACEAD,AB20.4,AC48,AE17,AD40.求证:ABCAED.【知识链接】 相似三角形的性质与判定【母题分析】先证得,然后根据相似三角形的判定定理即可证得结论【母题解答】角度一 条件开放型子题1:如图,在ABC中,ABAC.D,E分别为边AB,AC上的点AC3AD,AB3AE,点F为BC边上一点,添加一个条件:_,可以使得FDB与ADE相似(只需写出一个)【子题分析】 根据相似三角形的判定方法解答即可【子题解答】 角度二 结论开放型子题2:如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连。
5、专题四几何综合题类型一 几何动点问题(2017菏泽)正方形ABCD的边长为6 cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MNAF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AFMN;(2)如图2,若点M从点D出发,以1 cm/s的速度沿DA向点A运动,同时点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为t s.BFy cm,求y关于t的函数表达式;当BN2AN时,连接FN,求FN的长【分析】(1)根据正方形的性质得到ADAB,BAD90,由垂直的定义得到AHM90,由余角的性质得到BAFAMH,根据全等三角形的性质即可得到结论;(2)根据。
6、专题九圆的综合题类型一 与三角形结合(2019广东)如图1,在ABC中,ABAC,O是ABC的外接圆,过点C作BCDACB交O于点D,连接AD交BC于点E,延长DC至点F,使CFAC,连接AF.(1)求证:EDEC;(2)求证:AF是O的切线;(3)如图2,若点G是ACD的内心,BCBE25,求BG的长【分析】 (1)由ABAC知ABCACB,结合ACBBCD,ABCADC得BCDADC,从而得证;(2)连接OA,由CAFCFA知ACDCAFCFA2CAF,结合ACBBCD得ACD2ACB,CAFACB,据此可知AFBC,从而得OAAF,得到证;(3)证ABECBA得AB2BCBE,据此知AB5,连接AG,得BAGBADDAG,BGAGACACB,由点G为内心知DAGGAC,结合BADDAGGACACB。
7、专题二实际应用题类型一 几何类最值问题(2018福建B卷)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米(1)已知a20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米,如图1.求所利用旧墙AD的长;(2)已知0a50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值【分析】(1)按题意设出AD的长,表示出AB的长进而构成方程求解即可;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S。
8、专题二规律探索题类型一 数式规律探索(2019安顺)如图,将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 【分析】观察图表可知第n行第一个数是n2,可得第45行第一个数是2 025,推出第45行、第7列的数是2 02562 019.【自主解答】解数式规律探索型问题的一般方法(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规。
9、专题二填空题难题突破类型一 几何图形的旋转与折叠(2019深圳模拟)如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_【分析】 利用勾股定理及全等三角形的性质、等积法求解即可【自主解答】 1如图,在菱形ABCD中,ABC120,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B,D重合),折痕为EF,若DG2,BG6,则BE的长为_.2如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C,再将所折得的图形沿EF折叠,使得点D和点A重合若AB3。
10、专题三基础计算题突破类型一 实数的运算(2019台州)计算:|1|(1)【分析】 分别根据二次根式的性质、绝对值的性质化简即可求解【自主解答】 1(2019衢州)计算:|3|(3)0tan 45.2(2019金华)计算:|3|2tan 60()1.3计算:2cos 45(3)0|1|.类型二 整式的化简求值(2019宁波)先化简,再求值:(x2)(x2)x(x1),其中x3.【分析】 根据平方差公式、单项式乘多项式的法则把原式化简,代入计算即可【自主解答】 4(2019湖州)化简:(ab)2b(2ab)5化简:(x2y)22x(5xy)(3xy)(y3x)6化简求值:已知x,y满足:4x29y24x6y20,求代数式(2xy)22(x。
11、核心母题三圆【核心母题】如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACEAFO180.(1)求证:EM是O的切线;(2)若AE,BC,求阴影部分的面积(结果保留和根号)【知识链接】 圆周角定理,切线的性质与判定,扇形面积的计算【母题分析】(1)连接OC,根据垂直的定义得到AOF90,根据三角形的内角和得到ACE90A,根据等腰三角形的性质得到OCE90,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB90,推出ACOBCE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【母题解答】角度一。
12、专题六实际应用题类型一 工程问题(2019青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3 000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过7 800元,那么甲至少加工了多少天?【分析】 (1)根据题意列出分式方程,求解并检验即可解答(2)根据题意列出不等式求解即可【自主解答】1建设中的大外环路是我市的一。
13、专题八函数综合题类型一 一次函数与反比例函数综合题(2019粤西联考)已知,如图,一次函数ykxb(k,b为常数,k0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数y(n为常数且n0)的图象在第二象限交于点C,CDx轴,垂足为D,若OB2OA3OD6.(1)求一次函数与反比例函数的表达式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kxb的解集【分析】 (1)先求出A,B,C坐标,再利用待定系数法确定函数表达式(2)两个函数的表达式作为方程组,解方程组即可解决问题(3)根据一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号【自主。
14、专题一选择题难题突破类型一 几何动点函数图象分析命题角度一个动点与图形线段长、面积如图所示,已知ABC中,BC12,BC边上的高h6,D为BC边上一点,EFBC,交AB于点E,交AC于点F,设点E到边BC的距离为x,则DEF的面积y关于x的函数图象大致为( )【分析】 可过点A向BC作AGBC于点G,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案【自主解答】1如图,在正方形ABCD中,AB2,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是( )2(2019粤西联考)如图,在直径为AB的半圆O上有一。
15、核心母题一函数【核心母题】1直线l的表达式为y2x2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C,作出l1的图象,则l1的表达式是_;(3)将直线l绕点A顺时针旋转90得到l2,l2交l1于点D,作出l2的图象,则tanCAD_【知识链接】 一次函数的图象与性质【母题分析】(1)令x0求得y,令y0求得x,即可得出A,B的坐标,从而画出直线l的图象;(2)将直线l向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其表达式;(3)由旋转得出其函数图象,由图象可知,tanCADtan。
16、专题十几何变换综合题类型一 涉及一个动点的几何问题(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连接BD,作DEDB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为_;(2)是否存在这样的点D,使得DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)求证:;设ADx,矩形BDEF的面积为y,求y关于x的函数关系式(可利用的结论),并求出y的最小值【分析】 (1)求出AB,BC的长即可解决问题;(2)先推出ACO30,AC。
17、核心母题二图形变换【核心母题1】(2017嘉兴)一副含30和45角的三角板ABC和DEF叠合在一起,边BC与EF重合,BCEF12 cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是_现将三角板DEF绕点G按顺时针方向旋转(如图2),在CGF从0到60的变化过程中,点H相应移动的路径长为_(结果保留根号)【母题分析】作HMBC于M,设HMCMa.在RtBHM中,BH2HM2a,BMa,根据BMMFBC,可得aa12,推出a66,推出BH2a1212.当DGAB时,易证GH1DF,此时BH1的值最小,易知BH1BKKH133,当旋转角为60时,F与H2重合,易知BH26,观察图可知,在CGF从0到60的变化过。
18、2021 年中考年中考数学数学精准模拟试卷(二)精准模拟试卷(二) (全卷共 4 页,三大题,25 小题;考试时间:120 分钟;满分:150 分) 一、选择题(本大题共一、选择题(本大题共 10 小题,每小题小题,每小题 4 分,共分,共 40 分分.在在每每小题给出的四个备选项中,只有一项最符合题小题给出的四个备选项中,只有一项最符合题 目要求目要求.请在答题卡的指定位置请在答题卡的指定位置填。
19、专题二尺规作图类型一 尺规作图命题角度尺规作图及判定(2019慈溪模拟)如图,点P是ABC的BC边上一点,作以点P为圆心,且与AB边相切的圆,下列四种作法中错误的是( )【分析】利用基本作图,根据线段的垂直平分线和切线的判定方法可对A,B,C进行判断;利用圆周角定理和切线的判定可对D进行判断【自主解答】1(2019柯桥区模拟)如图,锐角ABC中,BCABAC,求作一点P,使得BPC与A互补,甲、乙两人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于点P,则P即为所求;乙:作BC的垂直平分线和BAC的平分线,两线交于点P,则P即为所求对于甲、乙两人。