直线与平面垂直的性质

一、直线与平面垂直的判定 1直线与平面垂直 定义 如果直线l与平面内的_直线都垂直,我们就说直线l与平面互相垂直 记法 l 有关 概念 直线l叫做平面的_,平面叫做直线l的_直线与平面垂直时,它们唯一的公共点P叫做_ 图示 画法 画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直

直线与平面垂直的性质Tag内容描述:

1、一、直线与平面垂直的判定1直线与平面垂直定义如果直线l与平面内的_直线都垂直,我们就说直线l与平面互相垂直记法l有关概念直线l叫做平面的_,平面叫做直线l的_直线与平面垂直时,它们唯一的公共点P叫做_图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直(1)定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语(2)直线与平面垂直是直线与平面相交的一种特殊形式(3)由直线与平面垂直的定义,得如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线2。

2、8.5直线、平面垂直的判定与性质最新考纲考情考向分析1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用、直线与平面所成角等内容题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1直线与平面垂直图形条件结论判定ab,b(b为内的任意一条直线)aam,an,m、n,mnOaab,ab性质a,baba。

3、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。

4、必考部分 第七章第七章 立体几何立体几何 第五讲 直线平面垂直的判定与性质 1 知识梳理双基自测 2 考点突破互动探究 3 名师讲坛素养提升 返回导航 1 知识梳理双基自测 返回导航 高考一轮总复习 数学新高考 第七章 立体几何 知识点一 。

5、8 8. .6.26.2 直线与平面垂直直线与平面垂直 1已知ABC,若直线 lAB,lAC,直线 mBC,mAC,则 l,m 的位置关系是 A相交 B异面 C平行 D不确定 答案 C 解析 依题意知 l平面 ABC,m平面 ABC, lm。

6、第4课时 直线与平面垂直的性质,第1章 1.2.3 直线与平面的位置关系,学习目标 1.掌握空间中线面垂直的性质定理. 2.能够运用线面垂直的性质定理证明一些简单的问题. 3.掌握线面垂直的判定与性质的综合应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与平面垂直的性质定理,思考 在日常生活中常见到一排排和地面垂直的电线杆.一排电线杆中的每根电线杆都与地面垂直,这些电线杆之间的位置关系是什么?,答案 平行.,梳理,平行,思考辨析 判断正误 1.若l,则过l有无数个平面与垂直.( ) 2.两垂直平面的二面角的平面角大小为90.( ),。

7、8.5 直线、平面垂直的判定与性质最新考纲 考情考向分析1.理解空间线面垂直、面面垂直的判定定理和性质定理.2.理解直线与平面所成角的概念,了解二面角及其平面角的概念.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.直线与平面垂直(1)定义如果直线 l 与平面 内的任意一条 直线都垂直,则直线 l 与平面 互相垂直,记作 l,直线 l 叫做平面 的垂线,平面 叫做直线 l 的垂面.(2)判定。

8、8.6.2 直线与平面垂直直线与平面垂直 A 级基础过关练 1已知直线 m,b,c 和平面 ,下列条件中,能使 m 的是 Amb,mc,b,c Bmb,b CmbA,b Dmb,b 2ABC 所在的平面为 ,直线 lAB,lAC,直线 mB。

9、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。

10、2.3.3 直线与平面垂直的性质【课时目标】 1理解直线和平面垂直的性质定理,并能用文字、符号和图形语言描述定理2能够灵活地应用线面垂直的性质定理证明相关问题3理解并掌握“平行”与“垂直”之间的相互转化直线与平面垂直的性质定理文字语言 垂直于同一个平面的两条直线_符号语言 Error!_图形语言作用 线面垂直线线平行作平行线一、选择题1下列说法正确的是( )A若 l 上有无数个点不在平面 内,则 lB若直线 l 与平面 垂直,则 l 与 内的任一直线垂直C若 E、F 分别为ABC 中 AB、BC 边上的中点,则 EF 与经过 AC 边的所有平面平行D两条垂直。

11、考点规范练 34 直线、平面垂直的判定与性质一、基础巩固1.设 l 是直线, 是两个不同的平面,则下列说法正确的是 ( )A.若 l,l,则 B.若 l,l ,则 C.若 ,l,则 l D.若 ,l ,则 l2.设 为平面,a,b 为两条不同的直线,则下列叙述正确的是( )A.若 a,b,则 ab B.若 a,ab,则 bC.若 a,ab,则 b D.若 a,ab,则 b3. 如图,在四面体 D-ABC 中,若 AB=CB,AD=CD,E 是 AC 的中点,则下列结论正确的是( )A.平面 ABC平面 ABDB.平面 ABD 平面 BDCC.平面 ABC平面 BDE,且平面 ADC平面 BDED.平面 ABC平面 ADC,且平面 ADC平面 BDE4.已知直线 m,l,平面 ,且 m,l,给出下列命题: 。

12、8.6.2 直线与平面垂直一 考点考点 学习目标学习目标 核心素养核心素养 异面直线所成的角 会用两条异面直线所成角的定义,找出或作出异面直线 所成的角,会在三角形中求简单的异面直线所成的角 直观想象逻辑推理 数学运算 导学聚焦 考点考点 。

13、第二课时第二课时 直线与平面垂直的性质直线与平面垂直的性质 基础达标 一选择题 1.若直线 a 与平面 不垂直,那么在平面 内与直线 a 垂直的直线 A.只有一条 B.有无数条 C.是平面内的所有直线 D.不存在 解析 当 a平面 时,在平。

14、A 级 基础巩固一、选择题1已知互相垂直的平面 , 交于直线 l.若直线 m,n 满足 m ,n ,则( )Aml BmnCnl Dm n解析:选项 A,只有当 m 或 m 时,m l;选项 B,只有当 m 时,m n;选项C,由于 l,所以 nl;选项 D,只有当 m 或 m 时,mn.答案:C2设 m,n 是两条不同的直线, , 是两个不同的平面,下列命题正确的是( )A若 mn,n,则 m B若 m, ,则 mC若 m,n ,n 则 mD若 mn,n , ,则 m解析:对于 A,若 mn,n,则 m 或 m 或 m 或 m 与 斜交,故 A 错误;对于 B,若 m, 则 m 或 m 或 m 或 m 与 斜交,故 B 错误;对于 C,若m,n,则 mn。

15、训练4直线与平面垂直的判定与性质一、选择题1.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是()A.相交 B.平行 C.异面 D.相交或平行答案B解析由线面垂直的性质可得.2.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC答案C解析由线面垂直的判定定理知OA垂直于平面OBC.3.对两条不相交的空间直线a与b,必存在平面,使得下列结论正确的是()A.a,b B.a,bC.a,b D.a,b答案B解析对于A,当a与b是异面直线时,A错误;对于B,若a。

16、74 直线平面垂直的判定与性质直线平面垂直的判定与性质 教材梳理 1线线垂直 如果两条直线所成的角是无论它们是相交还是异面,那么这两条直线互相垂直 2直线与平面垂直 1定义:如果直线 l 与平面 内的任意一条直线都垂直,我们就说,记 作直线。

17、第二章 点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质2.3.3 直线与平面垂直的性质学习目标1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力.合作学习一、设计问题,创设情境如图,长方体 ABCD-ABCD中,棱 AA,BB,CC,DD所在直线都垂直所在的平面 ABCD,它们之间具有什么位置关系?二、信息交流,揭示规律问题 1:判断垂直于同一条直线的两条直线的位置关系 ?问题 2:能否找出恰当空间模型探究垂直于同一个平面的两条直线的位置关。

18、 8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重点考查内容,涉及线线垂直、线面垂直、 面面垂直的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直。

19、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。

20、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。

【直线与平面垂直的性质】相关PPT文档
【直线与平面垂直的性质】相关DOC文档
8.6.2直线与平面垂直 同步练习(含答案)
标签 > 直线与平面垂直的性质[编号:178598]