第2课时 直线与平面平行,第一章 1.2.2 空间中的平行关系,学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系. 2.学会用图形语言、符号语言表示三种位置关系. 3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题.,问题导学,达标检测,题型探
6.2.3垂直关系第2课时平面与平面垂直Tag内容描述:
1、第2课时 直线与平面平行,第一章 1.2.2 空间中的平行关系,学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系. 2.学会用图形语言、符号语言表示三种位置关系. 3.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与平面的位置关系,有且只有一个公共点,有无数个公共点,没有公共点,a,aA,a,知识点二 直线与平面平行的判定,思考1 如图,一块矩形木板ABCD的一边AB在平面内,把这块木板绕AB转动,在转动过程中,AB的对边CD(不。
2、32 立体几何中的向量方法第 1 课时 空间向量与平行、垂直关系1.理解直线的方向向量与平面的法向量的概念 2.会求平面的法向量3能利用直线的方向向量和平面的法向量判断并证明空间中的平行、垂直关系1直线的方向向量和平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量,一条直线的方向向量有无数个(2)平面的法向量直线 l,取直线 l 的方向向量 a,则向量 a 叫做平面 的法向量2空间平行关系的向量表示(1)线线平行设直线 l,m 的方向向量分别为 a(a 1,b 1,c 1),b(a 2,b 2,c 2),则lm aba ba1a 2,b 1b 2,c 1。
3、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。
4、第2课时平面与平面平行基础过关1.a,b,则a与b的位置关系是()A.平行B.异面C.相交D.平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.下列说法中正确的是()A.如果两个平面、只有一条公共直线a,就说平面、相交,并记作aB.两平面、有一个公共点A,就说、相交于过A点的任意一条直线C.两平面、有一个公共点A,就说、相交于A点,并记作AD.两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段.3.平面内有不共线的三点。
5、第2课时两平面垂直的判定一、选择题1.下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面内的直线a垂直于平面内的直线b答案D解析如图所示,在正方体ABCDA1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.2.如图所示,在三棱锥DABC中,若ABCB,ADCD,E是AC的中点,则下列结论中正确的是()A.平面ABC平面ABDB.平面ABD平面BDCC.平面ABC平面BDE,且平面ADC平面BDED.平面ABC平面ADC,且平。
6、第4课时 直线与平面垂直的性质,第1章 1.2.3 直线与平面的位置关系,学习目标 1.掌握空间中线面垂直的性质定理. 2.能够运用线面垂直的性质定理证明一些简单的问题. 3.掌握线面垂直的判定与性质的综合应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直线与平面垂直的性质定理,思考 在日常生活中常见到一排排和地面垂直的电线杆.一排电线杆中的每根电线杆都与地面垂直,这些电线杆之间的位置关系是什么?,答案 平行.,梳理,平行,思考辨析 判断正误 1.若l,则过l有无数个平面与垂直.( ) 2.两垂直平面的二面角的平面角大小为90.( ),。
7、第2课时 两平面垂直的判定,第1章 1.2.4 平面与平面的位置关系,学习目标 1.了解二面角及其平面角的概念,能确定二面角的平面角. 2.初步掌握面面垂直的定义及两个平面垂直的判定定理.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二面角,思考1 观察教室内门与墙面,当门绕着门轴旋转时,门所在的平面与墙面所形成的角的大小和形状.数学上,用哪个概念来描述门所在的平面与墙面所在的平面所形成的角?,答案 二面角.,思考2 平时,我们常说“把门开大一点”,在这里指的是哪个角大一点?,答案 二面角的平面角.,梳理 (1)二面角的概。
8、第2课时平面与平面平行学习目标 1理解平面与平面平行的判定定理、性质定理的含义2会用图形语言、文字语言、符号语言准确描述平面与平面平行的判定定理、性质定理,并知道其地位和作用3能运用平面与平面平行的判定定理、性质定理证明一些空间面面关系的简单问题知识链接1直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行2直线和平面平行的性质定理:一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行预习导引面面平行的判定定理、性质定理定理表示面面平行的判定定理面面。
9、第2课时平面与平面平行基础过关1a,b,则a与b位置关系是()A平行 B异面C相交 D平行或异面或相交答案D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交2下列说法中正确的是()A如果两个平面,只有一条公共直线a,就说平面,相交,并记作aB两平面,有一个公共点A,就说,相交于过A点的任意一条直线C两平面,有一个公共点A,就说,相交于A点,并记作AD两平面ABC与DBC相交于线段BC答案A解析B不正确,若A,则,相交于过A点的一条直线;同理C不正确;D不正确,两个平面相交,其交线为直线而非线段3平面内有不共线的三点到平面的距离。
10、第1课时 直线与平面垂直,第一章 1.2.3 空间中的垂直关系,学习目标 1.理解直线与平面垂直的定义及性质. 2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与平面垂直的定义及性质,(1)直线与直线垂直 如果两条直线相交于一点或 相交于一点,并且交角为 ,则称这两条直线互相垂直.,经过平移后,直角,垂线,任意一条,AB,垂面,任何直线都垂直,垂足,垂线段,距离,(2)直线与平面垂直的定义及性质,知识点二 直线和平面垂直的判定定理及推论,将一块三角形纸片ABC。
11、第2课时两平面垂直的判定学习目标1.了解二面角及其平面角的概念,能确定二面角的平面角.2.初步掌握面面垂直的定义及两个平面垂直的判定定理.知识点一二面角概念一般地,一条直线和由这条直线出发的两个半平面所组成的图形图示平面角定义一般地,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角图示符号OA,OB,l,Ol,OAl,OBlAOB是二面角的平面角范围0,规定二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面。
12、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。
13、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。
14、1.2.3空间中的垂直关系第1课时直线与平面垂直基础过关1.已知m,n表示两条不同直线,表示平面.下列说法正确的是()A.若m,n,则mnB.若m,n,则mnC.若m,mn,则nD.若m,mn,则n答案B解析方法一若m,n,则m,n可能平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.方法二如图,在正方体ABCDABCD中,用平面ABCD表示.A项中,若m为AB,n为BC,满足m,n,但m与n是相交直线,故A错.B项中,m,n,满足mn,这是线面垂直的性质,故。
15、第2课时 平面与平面垂直,第一章 1.2.3 空间中的垂直关系,学习目标 1.理解面面垂直的定义,并能画出面面垂直的图形. 2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化. 3.掌握面面垂直的证明方法,并能在几何体中应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 平面与平面垂直的定义,1.条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直. 2.结论:两个平面互相垂直. 3.记法:平面,互相垂直,记作.,知识点二 平面与平面垂直的判定定理,思考 建筑工人常在。
16、第2课时平面与平面垂直1设,是两个不同的平面,l,m是两条不同的直线,且l,m,则下列说法正确的是()A若l,则 B若,则lmC若l,则 D若,则lm答案A解析l,l,(面面垂直的判定定理),故A正确2如果直线l,m与平面,满足:l,l,m和m,那么必有()A且lm B且mCm且lm D且答案A解析B错,有可能m与相交;C错,可能m与相交;D错,有可能与相交3下列命题中正确的是()A平面和分别过两条互相垂直的直线,则B若平面内的一条直线垂直于平面内的两条平行直线,则C若平面内的一条直线垂直于平面内的两条相交直线,则D若平面内的一条直线垂直于平面内的无数条。
17、第2课时平面与平面垂直学习目标1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用知识点一平面与平面垂直的定义1条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直2结论:两个平面互相垂直3记法:平面,互相垂直,记作.知识点二平面与平面垂直的判定定理平面与平面垂直的判定定理文字语言如果一个平面过另一个平面的垂线,则这两个平面互相垂直图形语言符号语言a,a知识点。
18、第2课时平面与平面垂直基础过关1.空间四边形ABCD中,若ADBC,BDAD,那么有()A.平面ABC平面ADCB.平面ABC平面ADBC.平面ABC平面DBCD.平面ADC平面DBC答案D解析平面ADC平面DBC2.已知PA矩形ABCD所在的平面(如图).图中互相垂直的平面有()A.1对B.2对C.3对D.5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB,同样BC平面PAB,又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对.3.设l是直线,是两个不同的平面()A.若l,l,则B.若l,l,则C.若,l,则lD.若,l,则l答案B解析设a,若直。
19、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。
20、第2课时平面与平面垂直基础过关1空间四边形ABCD中,若ADBC,BDAD,那么有()A平面ABC平面ADCB平面ABC平面ADBC平面ABC平面DBCD平面ADC平面DBC答案D解析平面ADC平面DBC.2.已知PA矩形ABCD所在的平面(如图)图中互相垂直的平面有()A1对 B2对C3对 D5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB.BC平面PAB.又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对3设平面平面,在平面内的一条直线a垂直于平面内的一条直线b,则()A直线a必垂直于平面B直线b必垂直于平面C直线a不一定垂。