2.1.3-2.1.4 空间中直线与平面之间的位置关系 平面与平面之间的位置关系,2.1 空间点、直线、平面之间的位置关系,第二章 点、直线、平面之间的位置关系,在棱长为a的正方体ABCD-A1B1C1D1中; (1)正方体的哪些棱所在的直线与直线BC1是异面直线; (2)求异面直线AA1与BC所成
人教A版高中数学必修二2.3.1 直线与平面垂直的判定课件2Tag内容描述:
1、2.1.3-2.1.4 空间中直线与平面之间的位置关系 平面与平面之间的位置关系,2.1 空间点、直线、平面之间的位置关系,第二章 点、直线、平面之间的位置关系,在棱长为a的正方体ABCD-A1B1C1D1中; (1)正方体的哪些棱所在的直线与直线BC1是异面直线; (2)求异面直线AA1与BC所成的角; (3)求异面直线BC1与AC所成的角,巩固复习,如图,线段AB所在直线与长方体ABCD- ABCD的六个面所在的平面有几种 位置关系?,问题提出,探究新知(一),直线与平面的位置关系:,直线与平面相交与平行的情况统称 为直线在平面外,直线在平面外:,直线与平面的位置关系:,。
2、第2课时 平面与平面垂直,第一章 1.2.3 空间中的垂直关系,学习目标 1.理解面面垂直的定义,并能画出面面垂直的图形. 2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化. 3.掌握面面垂直的证明方法,并能在几何体中应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 平面与平面垂直的定义,1.条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直. 2.结论:两个平面互相垂直. 3.记法:平面,互相垂直,记作.,知识点二 平面与平面垂直的判定定理,思考 建筑工人常在。
3、2.2.3 直线与平面平行的性质,2.2 直线、平面平行的判定及其性质,第二章 点、直线、平面之间的位置关系,一、复习回顾:,1、直线和平面有哪几种位置关系?,平行、相交、在平面内,2、反映直线和平面三种位置关系的依据是什么?,公共点的个数,没有公共点: 平行 仅有一个公共点:相交 无数个公共点:在平面内,如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.,3、直线和平面平行的判定定理,线面平行的判定定理解决了线面平行的条件;反之,在直线与平面平行的条件下,会得到什么结论?,直线和平面平行的性质,二、问。
4、第1课时 直线与平面垂直,第一章 1.2.3 空间中的垂直关系,学习目标 1.理解直线与平面垂直的定义及性质. 2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线与平面垂直的定义及性质,(1)直线与直线垂直 如果两条直线相交于一点或 相交于一点,并且交角为 ,则称这两条直线互相垂直.,经过平移后,直角,垂线,任意一条,AB,垂面,任何直线都垂直,垂足,垂线段,距离,(2)直线与平面垂直的定义及性质,知识点二 直线和平面垂直的判定定理及推论,将一块三角形纸片ABC。
5、3.1.2 两条直线平行与垂直的判定【课时目标】 1能根据两条直线的斜率判定两条直线是否平行或垂直2能根据两条直线平行或垂直的关系确定两条直线斜率的关系1两条直线平行与斜率的关系(1)对于两条不重合的直线 l1,l 2,其斜率分别为 k1、k 2,有 l1l 2_(2)如果直线 l1、l 2 的斜率都不存在,并且 l1 与 l2 不重合,那么它们都与_垂直,故 l1_l22两条直线垂直与斜率的关系(1)如果直线 l1、l 2 的斜率都存在,并且分别为 k1、k 2,那么 l1l 2_(2)如果两条直线 l1、l 2 中的一条斜率不存在,另一个斜率是零,那么 l1 与 l2 的位置关系是_一、选。
6、2.2.3 直线与平面平行的性质,2.2 直线、平面平行的判定及其性质,第二章 点、直线、平面之间的位置关系,复习提问,直线与平面有什么样的位置关系?,1.直线在平面内有无数个公共点;,2.直线与平面相交有且只有一个公共点;,3.直线与平面平行没有公共点。,复习:线面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。,注意:,1、定理三个条件缺一不可。,2、简记:线线平行,则线面平行。,3、定理告诉我们:,要证线面平行,得在面内找一条线,使线线平行。,问题1:命题“若直线a平行于平面,则直 线。
7、2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定【课时目标】 1理解直线与平面平行的判定定理的含义2会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用3能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题1直线与平面平行的定义:直线与平面_公共点2直线与平面平行的判定定理:_一条直线与_的一条直线平行,则该直线与此平面平行用符号表示为_一、选择题1以下说法(其中 a,b 表示直线, 表示平面)若 ab,b,则 a;若 a,b,则 ab;若 ab,b,则 a;若 a,b,则 ab其中正确。
8、2.3.3 直线与平面垂直的性质【课时目标】 1理解直线和平面垂直的性质定理,并能用文字、符号和图形语言描述定理2能够灵活地应用线面垂直的性质定理证明相关问题3理解并掌握“平行”与“垂直”之间的相互转化直线与平面垂直的性质定理文字语言 垂直于同一个平面的两条直线_符号语言 Error!_图形语言作用 线面垂直线线平行作平行线一、选择题1下列说法正确的是( )A若 l 上有无数个点不在平面 内,则 lB若直线 l 与平面 垂直,则 l 与 内的任一直线垂直C若 E、F 分别为ABC 中 AB、BC 边上的中点,则 EF 与经过 AC 边的所有平面平行D两条垂直。
9、2.3.4 平面与平面垂直的性质,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,一、复习引入,1、平面与平面垂直的定义,2、平面与平面垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直。,符号表示:,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。,提出问题:,该命题正确吗?,二、探索研究,. 观察实验,观察两垂直平面中,一个平面内的直线与另一个平面的有哪些位置关系?,.概括结论,平面与平面垂直的性质定理,b,两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.,。
10、2.2.2 平面与平面平行的判定,2.2 直线、平面平行的判定及其性质,第二章 点、直线、平面之间的位置关系,根据判定定理,即:若线线平行,则线面平行。,一、知识回顾,2.空间两平面有哪些位置关系?,1.判定直线与平面平行的方法有哪些?,a,b,1.根据定义,即直线与平面没有公共点。,一、知识回顾,2.空间两平面有哪些位置关系?,1.判定直线与平面平行的方法有哪些?,相交,平行,有公共点,无公共点,思考:,反之,若中所有直线都平行 ,则,启示?,两个平面平行的问题,可以转化为一个平面内的直线与另一个平面平行的问题。,若平面,则中所有直线都平。
11、3.1.2 两条直线平行与垂直的判定,3.1 直线的倾斜角与斜率,第三章 直线与方程,复习,三要素,情境导入,己知直线l1过点A(0,0) 、B(2,-1),直线l2过点C (4,2) 、D(2,-2),直线l3过点M(3,-5) 、N(-5,-1), 你 能在同一个坐标系内画出这三条直线,并根据 图形判断三直线之间的位置关系吗?它们的斜 率之间又有什么关系?,l1l3 , l2l1 , l2l3 .设l1, l2, l3的斜率分别为 k1, k2, k3, 则k1= , k2=2, k3= , 则k1= k3, k1k2=-1, k2k3=-1.,设两条不重合的直线l1、l2的斜率分别为k1、k2.,两条直线平行的判定,(3)若两条不重合的直线的斜率都不存在,它们 平行吗。
12、2.3.2 平面与平面垂直的判定【课时目标】 1掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小2掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直1二面角:从一条直线出发的_所组成的图形叫做二面角_叫做二面角的棱_叫做二面角的面2二面角的平面角如图:在二面角 l 的棱 l 上任取一点 O,以点 O 为_,在半平面 和 内分别作垂直于棱 l 的射线 OA 和 OB,则射线 OA 和 OB 构成的_叫做二面角的平面角3平面与平面的垂直(1)定义:如果两个平面相交,且它们所成的二面角是_ ,就说这两个平面互相垂直(2)面面垂直的判。
13、2.3.4 平面与平面垂直的性质,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,回顾,1.面面垂直的定义:,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。,回顾,2.面面垂直的判定定理:,一个平面过另一个平面的垂线,则这两个平面垂直。,面面垂直的性质,如果 (1) 里的直线都和垂直吗?,D,E,F,(2)什么情况下里的直线和垂直?,探究,思考:设平面 平面 ,点P在平面 内,过点P作平面 的垂线a,直线a与平面 具有什么位置关系?,直线a在平面 内,面面垂直的性质,面面垂直性质定理:两个平面垂直,。
14、3.1.2 两条直线平行与垂直的判定,3.1 直线的倾斜角与斜率,第三章 直线与方程,相关知识: 两条直线的位置关系直线的斜率与倾斜角的关系三角形内角和定理及外角定理,平行 (重合) 相交,内角和定理:三角形的三个内角之和为 外角定理:三角形的一个外角等于不相邻的两个内角之和,思考以下问题: 两条直线平行的充要条件及其证明 两条直线平行,斜率一定相等吗?为什么? 两条直线垂直的充要条件及其证明 两条直线垂直,它们的斜率之积一定等于-1吗?为什么?,两条直线平行,前提条件:,两条直线的斜率都存在,分别为,不重合,下列说法正确的有( ) 若两直线斜。
15、2.3.2 平面与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,复习与回顾,观察1:为了解决实际问题,人们需要研究两个平面所成的角。 请同学们观察下面的水坝,水坝在修建的时候,为了坚固耐用,水坝的坡面与水平面要成一个适当的角度,这个角就是两个面所成的角。,观察2:当我们把教室的门打开到一定位置,门所在的面与墙所在的面也形成一个角。,我们把类似这样的角成为二面角.,定义:从一条直线出发的两个半平面所组成的图形叫做二面角,记为:二面角-l-,简记:P-l-Q,几个重要概念:,二面角的平面。
16、,2.3.2 平面与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,1、二面角的相关概念:,半平面,半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。,这条直线叫做二面角的棱。,这两个半平面叫做二面角的面。,平面角由射线-点-射线构成。,二面角由半平面-线-半平面构成。,l,A,B,P,Q,二面角的表示,角,从一点出发的两条射线所组成的图形叫做角。,定义,构成,射线点射线(顶点),表示法,AOB,图形,、平面角、二面角的对比,如何度量二面角的大小?,能否转化为平面角来处理?,你能在教室内找到二面。
17、2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定【课时目标】 1掌握直线与平面垂直的定义2掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直3知道斜线在平面上的射影的概念,斜线与平面所成角的概念1直线与平面垂直(1)定义:如果直线 l 与平面 内的_直线都 _,就说直线 l 与平面 互相垂直,记作_直线 l 叫做平面 的_,平面 叫做直线 l 的_(2)判定定理文字表述:一条直线与一个平面内的_都垂直,则该直线与此平面垂直符号表述:Error!l 2直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的_所成的_,叫。
18、2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,2.3.1 直线与平面垂直的判定,一.回顾复习:,1.直线和平面的位置关系 :,(1)直线在平面内 (2)直线和平面平行(3)直线和平面相交,垂直是一种特殊的相交,l,o,D,C,B,A,m,E,1.直线与平面垂直的定义:,如果直线 与平面 内的任意一条直线都垂直,我们就说直线 和平面 互相垂直。记作:,垂足,直线与平面的一条边垂直,2.直线与平面垂直的画法:,思考,除定义外,如何判断一条直线与平面垂直呢?,能不能把线面垂直问题转化为线线垂直问题?,线面平行的判定:,空间问题 平。
19、2.3.1 直线与平面垂直的判定,2.3 直线、平面垂直的判定及其性质,第二章 点、直线、平面之间的位置关系,思考?,一条直线 与一个平面垂直的意义是什么?,(一)直线与平面垂直的定义,如果一条直线 l 和一个平面内的任意一条直线都垂直,我们就说直线 l 和平面 互相垂直. 记作l ,l叫做的垂线, 叫做 l的垂面, l与的交点P叫做垂足,1.如果一条直线 l 和一个平面内的无数条直线都垂直,则直线 l和平面 互相垂直( ),思考:,(性质定理),2.b是平面内任一直线,a,则ab (),a,D,B,A,C,B,D,C,容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与。