一元二次方程实际问题

2021 年中考一轮复习应用题分类训练之:实际问题与一元二次方程年中考一轮复习应用题分类训练之:实际问题与一元二次方程 1把一块长与宽之比为 2:1 的铁皮的四角各剪去一个边长为 10 厘米的小正方形,折起四边,可以做成一 个无盖的盒子,如果这个盒子的容积是 1500 立方厘米,设铁皮的宽为 x 厘

一元二次方程实际问题Tag内容描述:

1、2021 年中考一轮复习应用题分类训练之:实际问题与一元二次方程年中考一轮复习应用题分类训练之:实际问题与一元二次方程 1把一块长与宽之比为 2:1 的铁皮的四角各剪去一个边长为 10 厘米的小正方形,折起四边,可以做成一 个无盖的盒子,如果这个盒子的容积是 1500 立方厘米,设铁皮的宽为 x 厘米,则正确的方程是( ) A (2x20) (x20)1500 B10(2x10) (x10)150。

2、21.3 实际问题 与一元二次方程 第2课时 随着社会的丌断发展,营销问题在我们的生活中越来越重要,今天我们就来学习一下利用一元二次方程解决不营销有关的问题. 1 知识点 营销利润问题 例1 两年前生产1 t甲种药品的成本是5 000元,生。

3、22.2 二次函数与一元二次方程二次函数与一元二次方程 第第 1 课时课时 一教学内容:一教学内容:二次函数与一元二次方程 二教学目标:二教学目标: 知识与技能知识与技能 1理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系。

4、,1.4 用一元二次方程解决问题(1),南京第二十九中致远初级中学 张莹莹,苏科数学,一、问题情境,一块正方形铁皮的4个角各剪去一个边长为4cm的小正方形,做成一个无盖的铁盒.已知铁盒的容积是400cm3,求原铁皮的边长.,问题1. 如何设未知数?如何找出表达实际 问题的相等关系?,问题2. 你是如何解这个方程的?方程的解都符合题意吗?,问题3. 用方程解决问题的一般步骤是什么?,苏科数学,二、数学活动,活动1,用一根长22cm的铁丝: (1) 能否围成面积是30cm2的矩形? (2) 能否围成面积是32cm2的矩形?,问题1. 如何设未知数?如何找出表达实际问题。

5、,1.4 用一元二次方程解决问题(3),南京第二十九中致远初级中学 张莹莹,苏科数学,一、问题情境,如图,在矩形ABCD中,AB6cm,BC3cm.点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s的速度移动.如果点P、Q同时出发,用t(s)表示移动的时间(0t3).那么,当t为何值时,QAP的面积等于2cm2?,苏科数学,二、数学活动,活动1,如图,某海关缉私艇在C处发现在正北方向30km的A处有一艘可疑船只,并测得它正以60km/h的速度向正东方向航行缉私艇随即以75km/h的速度前往拦截,在B处将可疑船只拦截缉私艇从C处到B处需航行多长时间。

6、第 1 页(共 29 页)22.3 实际问题与一元二次方程同步练习卷一选择题(共 4 小题)1如图,在ABC 中,ABC90,AB4cm,BC3cm,动点 P,Q 分别从点 A,B同时开始移动(移动方向如图所示) ,点 P 的速度为 cm/s,点 Q 的速度为 1cm/s,点Q 移动到点 C 后停止,点 P 也随之停止运动,若使PBQ 的面积为 ,则点 P 运动的时间是( )A2s B3s C4s D5s2为了做好“精准扶贫” ,某市 2016 年投入资金 l200 万元用于异地安置,此后投入资金逐年增加,2016 年到 2018 年,该市投入异地安置资金的总金额达 5700 万元根据题意所列方程正确的是( )A1200。

7、第 1 页(共 18 页)22.3 实际问题与一元二次方程同步练习卷一选择题(共 13 小题)12019 年 2 月底某种疫苗的原价为 80 元/支,2019 年两会后因实施医保新措施,4 月份经过两次连续降价后该疫苗的价格为 60 元,求此疫苗的月平均降价率设此疫苗的月平均降价率 x,则可列方程为( )A80(12x)60 B80(1x) 260C80(1+x) 2100 D60(1 x) 2802现有一块长方形绿地,它的边长为 100m,现将长边缩小与短边相等(短边不变) ,使缩小后的绿地的形状是正方形,且缩小后的绿地面积比原来减少 1200m2,设缩小后的正方形边长为 xm,则下列方程正。

8、21 认识一元二次方程认识一元二次方程 第第 1 课时课时 一元二次方程一元二次方程 1了解一元二次方程的概念;(重点) 2掌握一元二次方程的一般形式 ax2bxc0(a,b,c 为常数,a0),能分清二次项、一次 项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点) 3能根据具体问题的数量关系,建立方程的模型(难点) 一、情景导入 一个面积为 120m2。

9、,苏科数学,1.1 一元二次方程,29中致远 曹霞,正方形桌面的面积是2m2 ,问:正方形的边长与面积之间有何数量关系?你用什么样的数学式子来描述它们之间的关系?,设正方形桌面的边长是xm,可得:x22,请你说一说,问题2:某校图书馆的藏书在两年内从5万册增加到9.8万册,问:图书馆藏书年平均增长的百分率与藏书量之间有何关系?你用什么样的数学式子来描述它们之间的关系?,设图书馆的藏书平均每年增长的百分率是x,图书馆的藏书一年后为5(1x)万册,两年后为5(1x)2万册,可得:5(1x)2 9.8,请你想一想,问题1:如图,矩形花圃一面靠墙,另外。

10、26 应用一元二次方程应用一元二次方程 第第 1 课时课时 几何问题及数字问题与一元二次方程几何问题及数字问题与一元二次方程 1掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果 的合理性;(重点、难点) 2理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提 出问题、分析问题,并能运用所学的知识解决问题 一、情景导入 要设计一本书的封面,。

11、21.1 一元二次方程一元二次方程 教学目标教学目标 知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识 过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。

12、第21章:一元二次方程,人教版九年级上册,21.1 一元二次方程,1、什么是方程?,2、我们学过什么样的方程呢?,含有未知数的等式叫方程,一元(未知数)一次(未知数的指数)方程: ax+b=0(a0),一、知识回顾,情景引入:问题1,二、导入新课,要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?,x,2-x,C,A,B,上部AC ,下部BC有如下关系:即于是得方程:,化简得:,解:,=,BC2=2AC,x2=2(2-x),x2+2x-4=0,学习目标:,1.理解一元二次方程的概念;会把一元二次方程化为一般。

13、21.3 实际问题与一元二次方程基础闯关全练拓展训练1.(2017 江苏无锡滨湖期中)商场将进价为 2 000 元的冰箱以 2 400 元售出,平均每天能售出8 台.为了促销,商场决定采取适当的降价措施 ,调查表明: 这种冰箱的售价每降低 50 元,平均每天就能多售出 4 台, 商场要想在这种冰箱销售中每天盈利 4 800 元,同时又要使消费者得到更多实惠,每台冰箱应降价( )A.100 元 B.200 元 C.300 元 D.400 元2.如图是一张月历表,在此月历表上可以用一个矩形任意圈出 22 个位置相邻的数(如2,3,9,10).如果圈出的 4 个数中最大数与最小数的积为 128,则这 4 个数中最。

14、第 1 页,共 13 页一元二次方程的应用测试题时间:90 分钟 总分: 100题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014 年约为 20 万人次,2016 年约为 万人次,设观赏人数年均增长率为 x,则下列方程中正确28.8的是 ( )A. B. 20(1+2)=28.8 28.8(1+)2=20C. D. 20(1+)2=28.8 20+20(1+)+20(1+)2=28.82. 有 x 支球队参加篮球比赛,共比赛了 45 场,每两队之间都比赛一场,则下列方程中符合题意的是 ( )A. B. C. D. 12(1)=45 12(+1)=45 (1)=45 (+1)=453. 。

15、21.3 实际问题与一元二次方程 第1课时,1.掌握列一元二次方程解应用题的步骤:审、设、列、 解、检、答 2.建立一元二次方程的数学模型,解决如何全面地比较 几个对象的变化状况,我们已经学过了几种解一元二次方程的方法?,分解因式法 (x-p)(x-q)=0,直接开平方法,配方法,x2=a (a0),(x+m)2=n (n0),公式法,【例1】 有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个?,开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_人患了流感;,第二轮传染中,这些人中的每个。

16、2 21 1. .3 3 实际问题与一元二次方程实际问题与一元二次方程 21.3 21.3 实际问题与实际问题与一元二次方程一元二次方程 第一课时 第二课时 第三课时 人教版人教版 数学数学 九九年级年级 上册上册 2 21 1. .3 3。

17、21.3 实际问题与一元二次方程测试时间:25 分钟一、选择题1.一个矩形的长比宽多 3 cm,面积是 25 cm2,求这个矩形的长和宽.设矩形的宽为 x cm,则下面所列方程正确的是 ( )A.x2-3x+25=0 B.x 2-3x-25=0 C.x 2+3x-25=0 D.x 2+3x-50=02.(2018 河北廊坊霸州期中)为改善居民住房条件 ,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约 12 m2 提高到 14.52 m2,若每年的年增长率相同,则年增长率为( )A.9% B.10% C.11% D.12%3.某西瓜经营户以 2 元/千克的价格购进一批小型西瓜, 以 3 元/千克的价格售出, 每天可售出200 千克 .为了促销 ,。

18、21.3 实际问题与一元二次方程实际问题与一元二次方程 第第 1 课时课时 一一 教学内容分析教学内容分析 本课的主要内容是以列一元二次方程解应用题为中心, 深入探究传播问题和平均变化率问题中的数量关系。活动的侧重点是列方程解应用题,提高学。

【一元二次方程实际问题】相关PPT文档
【一元二次方程实际问题】相关DOC文档
标签 > 一元二次方程实际问题[编号:188665]