平面垂直平面

第2课时平面与平面垂直学习目标1掌握平面与平面垂直的定义2掌握平面与平面垂直的判定与性质定理3理解线线垂直,线面垂直和面面垂直的内在联系知识链接1直线与第2课时平面与平面垂直基础过关1空间四边形ABCD中,若ADBC,BDAD,那么有()A平面ABC平面ADCB平面ABC平面ADBC平面ABC平面D

平面垂直平面Tag内容描述:

1、 第 1 页 / 共 20 页 第第 41 讲:直线与平面、平面与平面垂直讲:直线与平面、平面与平面垂直 一、课程标准 1、以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理; 2、能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 二、基础知识回顾 知识梳理 1. 直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直线。

2、 第 1 页 / 共 12 页 第第 41 讲:直线与平面、平面与平面垂直讲:直线与平面、平面与平面垂直 一、课程标准 1、以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理; 2、能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题. 二、基础知识回顾 知识梳理 1. 直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直线。

3、62.3垂直关系第1课时直线与平面的垂直基础过关1已知直线m,n是异面直线,则过直线n且与直线m垂直的平面()A有且只有一个 B至多一个C有一个或无数个 D不存在答案B解析若异面直线m,n垂直,则符合要求的平面有一个,否则不存在2如图所示,PO平面ABC,BOAC,在图中与AC垂直的线段有()A1条 B2条C3条 D4条答案D解析PO平面ABC,POAC,又ACBO,AC平面PBD,平面PBD中的4条线段PB,PD,PO,BD与AC垂直3空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析取BD中点O,连。

4、62.3垂直关系第1课时直线与平面的垂直学习目标 1了解直线与平面垂直的定义,两异面直线垂直的定义2.理解并掌握直线与平面垂直的判定定理,并会应用之判断直线与平面垂直. 3.掌握并会应用直线与平面垂直的性质,理解平行与垂直之间的关系知识链接生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?预习导引1直线与平面垂直的概念如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l直线l叫作平面的垂线;平面叫作直线l的垂面2。

5、第2课时 平面与平面垂直,第一章 1.2.3 空间中的垂直关系,学习目标 1.理解面面垂直的定义,并能画出面面垂直的图形. 2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化. 3.掌握面面垂直的证明方法,并能在几何体中应用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 平面与平面垂直的定义,1.条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直. 2.结论:两个平面互相垂直. 3.记法:平面,互相垂直,记作.,知识点二 平面与平面垂直的判定定理,思考 建筑工人常在。

6、第2课时平面与平面垂直基础过关1.空间四边形ABCD中,若ADBC,BDAD,那么有()A.平面ABC平面ADCB.平面ABC平面ADBC.平面ABC平面DBCD.平面ADC平面DBC答案D解析平面ADC平面DBC2.已知PA矩形ABCD所在的平面(如图).图中互相垂直的平面有()A.1对B.2对C.3对D.5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB,同样BC平面PAB,又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对.3.设l是直线,是两个不同的平面()A.若l,l,则B.若l,l,则C.若,l,则lD.若,l,则l答案B解析设a,若直。

7、 8.5 直线直线、平面垂直的判定与性质平面垂直的判定与性质 最新考纲 考情考向分析 1.以立体几何的定义、 公理和定理为出发点, 认识和理解空间中线面垂直的有关性质与 判定定理. 2.能运用公理、定理和已获得的结论证明一 些空间图形的垂直关系的简单命题. 直线、平面垂直的判定及其性质是高考中的 重点考查内容,涉及线线垂直、线面垂直、 面面垂直的判定及其应用等内容题型主要 以解答题的形式出现,解题要求有较强的推 理论证能力,广泛应用转化与化归的思想. 1直线与平面垂直 (1)定义 如果直线 l 与平面 内的任意一条直线都垂直,则直。

8、直线、平面垂直的判定编稿:丁会敏 审稿:王静伟【学习目标】1了解空间直线和平面的位置关系;2掌握直线与平面、平面与平面垂直的判定定理; 3能利用直线与平面、平面与平面垂直的定义、判定定理解决与其相关的问题 【要点梳理】要点一:直线与直线垂直的定义两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直。要点诠释:空间中两直线垂直可能是相交垂直,也可能是异面垂直,即两条直线互相垂直时可能没有垂足。要点二:直线与平面垂直的定义与判定1.直线和平面垂直的定义如果。

9、直线、平面垂直的判定编稿:丁会敏 审稿:王静伟【学习目标】1了解空间直线和平面的位置关系;2掌握直线与平面、平面与平面垂直的判定定理; 3能利用直线与平面、平面与平面垂直的定义、判定定理解决与其相关的问题。 【要点梳理】要点一:直线与直线垂直的定义两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直。要点诠释:空间中两直线垂直可能是相交垂直,也可能是异面垂直,即两条直线互相垂直时可能没有垂足。要点二:直线与平面垂直的定义与判定1.直线和平面垂直的定义如。

10、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。

11、直线、平面垂直的性质编稿:丁会敏 审稿:王静伟【学习目标】1掌握直线与平面垂直的性质定理,并能解决有关问题;2掌握两个平面垂直的性质定理,并能解决有关问题;3能综合运用直线与平面、平面与平面的垂直、平行的判定和性质定理解决有关问题【要点梳理】要点一:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:3直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个。

12、第3课时两平面垂直的性质学习目标1.掌握平面与平面垂直的性质定理.2.能运用性质定理解决一些简单的问题.3.了解平面与平面垂直的判定定理和性质定理间的相互联系.知识点一平面与平面垂直的性质定理文字语言如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面符号语言,l,a,ala图形语言作用面面垂直线面垂直;作面的垂线.知识点二空间垂直关系的转化点睛:线面垂直的定义、判定定理、性质定理都可以实现垂直关系的转化.一、平面与平面垂直的性质定理例1如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是D。

13、第3课时直线与平面垂直的判定和性质学习目标1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理,并能灵活应用判定定理证明直线与平面垂直.3.掌握空间中线面垂直的性质定理,能够运用线面垂直的性质定理证明一些简单的问题.知识点一直线与平面垂直的定义定义如果一条直线a与一个平面内的任意一条直线都垂直,我们就说直线a与平面互相垂直记法a有关概念直线a叫做平面的垂线,平面叫做直线a的垂面,垂线和平面的交点P称为垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直知识点二直线和平面垂直的。

14、第2课时两平面垂直的判定学习目标1.了解二面角及其平面角的概念,能确定二面角的平面角.2.初步掌握面面垂直的定义及两个平面垂直的判定定理.知识点一二面角概念一般地,一条直线和由这条直线出发的两个半平面所组成的图形图示平面角定义一般地,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角图示符号OA,OB,l,Ol,OAl,OBlAOB是二面角的平面角范围0,规定二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面。

15、1.2.3空间中的垂直关系第1课时直线与平面垂直学习目标1.理解直线与平面垂直的定义及性质.2.掌握直线与平面垂直的判定定理及推论,并会利用定理及推论解决相关的问题知识点一直线与平面垂直的定义及性质1直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直2直线与平面垂直的定义及性质定义及符号表示图形语言及画法有关名称重要结论如果一条直线(AB)和一个平面()相交于点O,并且和这个平面内过交点(O)的任何直线都垂直我们就说这条直线和这个平面互相垂直,记作AB把直线AB画成和表示平。

16、1.2.3空间中的垂直关系第1课时直线与平面垂直一、选择题1若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A平面OAB B平面OACC平面OBC D平面ABC答案C解析OAOB,OAOC且OBOCO,OA平面OBC.2直线a直线b,直线b平面,则a与的关系是()Aa BaCa Da或a答案D解析若a,b平面,可证得ab;若a,过a作平面,c,b平面,c,则bc,ac,于是ba.故答案为D.3已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A垂直且相交 B相交但不一定垂直C垂直但不相交 D不垂直也不相交答案C解析如图,取BD中点O,连接AO,CO,则BDAO,BDCO,AOOCO,BD平面AOC,B。

17、第2课时平面与平面垂直1设,是两个不同的平面,l,m是两条不同的直线,且l,m,则下列说法正确的是()A若l,则 B若,则lmC若l,则 D若,则lm答案A解析l,l,(面面垂直的判定定理),故A正确2如果直线l,m与平面,满足:l,l,m和m,那么必有()A且lm B且mCm且lm D且答案A解析B错,有可能m与相交;C错,可能m与相交;D错,有可能与相交3下列命题中正确的是()A平面和分别过两条互相垂直的直线,则B若平面内的一条直线垂直于平面内的两条平行直线,则C若平面内的一条直线垂直于平面内的两条相交直线,则D若平面内的一条直线垂直于平面内的无数条。

18、第2课时平面与平面垂直学习目标1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用知识点一平面与平面垂直的定义1条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直2结论:两个平面互相垂直3记法:平面,互相垂直,记作.知识点二平面与平面垂直的判定定理平面与平面垂直的判定定理文字语言如果一个平面过另一个平面的垂线,则这两个平面互相垂直图形语言符号语言a,a知识点。

19、第2课时平面与平面垂直基础过关1空间四边形ABCD中,若ADBC,BDAD,那么有()A平面ABC平面ADCB平面ABC平面ADBC平面ABC平面DBCD平面ADC平面DBC答案D解析平面ADC平面DBC.2.已知PA矩形ABCD所在的平面(如图)图中互相垂直的平面有()A1对 B2对C3对 D5对答案D解析DAAB,DAPA,ABPAA,DA平面PAB.BC平面PAB.又易知AB平面PAD,DC平面PAD.平面PAD平面ABCD,平面PAD平面PAB,平面PBC平面PAB,平面PAB平面ABCD,平面PDC平面PAD,共5对3设平面平面,在平面内的一条直线a垂直于平面内的一条直线b,则()A直线a必垂直于平面B直线b必垂直于平面C直线a不一定垂。

20、第2课时平面与平面垂直学习目标 1掌握平面与平面垂直的定义2掌握平面与平面垂直的判定与性质定理3理解线线垂直,线面垂直和面面垂直的内在联系知识链接1直线与平面垂直的判定定理定理:如果一条直线垂直于一个平面内的两条相交直线,那么这条直线就与这个平面垂直推论:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面;2直线与平面垂直的性质定理定理:垂直于同一个平面的两条直线平行符号表示:ab.预习导引1两个平面垂直的判定定理(1)定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直(2)图形表述:。

【平面垂直平面】相关PPT文档
【平面垂直平面】相关DOC文档
6.2.3垂直关系(第2课时)平面与平面垂直
标签 > 平面垂直平面[编号:66288]