2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 2.2 函数的单调性与最值函数的单调性与最值 目录 一、题型全归纳 .,第二章第二章 函数函数 高考导航高考导航 考试要求 重难点击 命题展望 1.了解构成函数的三要素,会求一些简单
高考数学一轮复习总教案2.2函数的单调性Tag内容描述:
1、第二章第二章 函数函数 高考导航高考导航 考试要求 重难点击 命题展望 1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念. 2.在实际生活中,会根据不同的需要选择恰当的方法如图象法列表法解析法表示函数. 3.了解简单。
2、2.2 函数的单调性与最值,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义. 2.学会运用函数图象理解和研究函数的性质,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的单调性 (1)单调函数的定义,f(x1)f(x2),f(x1)f(x2),知识梳理,ZHISHISHULI,(2)单调区间的定义 如果函数yf(x)在区间D上是 或 ,那么就说函数yf(x)在这一区间具有(严格的)单调性, 叫做yf(x)的单调区间.,上升的,下降的,增函。
3、2.7 幂函数与函数的图象幂函数与函数的图象 典例精析典例精析 题型一 幂函数的图象与性质 例 1点 2,2在幂函数 fx的图象上,点2,14在幂函数 gx的图象上. 1求 fxgx的解析式; 2问当 x 为何值时,有:gxfx;fxgx;。
4、 2.3 函数的奇偶性函数的奇偶性 典例精析典例精析 题型一 函数奇偶性的判断 例 1判断下列函数的奇偶性. 1fxlg1x2x222; 2fx 解析1由得定义域为1,00,1, 这时 fxlg1x2x222lg1x2x2, 因为 fxlg。
5、课时规范练(授课提示:对应学生用书第 219 页)A 组 基础对点练1下列函数中,定义域是 R 且为增函数的是( B )Aye x Byx 3Cyln x Dy|x|2下列函数中,既是偶函数又在区间(0,)上单调递减的是( C )Ay Bye x1xCyx 21 Dylg|x|3下列函数中,既是奇函数且在定义域内是增函数的为( D )Ayx1 Byx 3Cy Dln1x 2 x2 x4函数 f(x)ln(x 23x2)的递增区间是( D )A( ,1) B (1,32)C. D(2,)(32, )解析:令 tx 23x 2(x1)(x2) 0,求得 x1 或 x2,故函数的定义域为x|x 1 或 x2,f(x)ln t,由复合函数的单调性知本题即求函数 t 在定义域内的增区间结合二次函数的。
6、课时跟踪检测(五) 函数的单调性与最值 一抓基础,多练小题做到眼疾手快1(2019如皋中学月考)函数 f(x)| x22 x2|的增区间是_解析:因为函数 f(x)| x22 x2|( x1) 21|( x1) 21,所以函数 f(x)| x22 x2|的增区间是1,)答案:1,)2函数 y x(x0)的最大值为_x解析:令 t ,则 t0,所以 y t t2 2 ,x (t12) 14结合图象知,当 t ,即 x 时, ymax .12 14 14答案:143(2018徐州质检)函数 f(x) xlog 2(x2)在区间1,1上的最大值为(13)_解析:因为 y x和 ylog 2(x2)都是1,1上的减函数,所以 y (13) (13)xlog2(x2)是在区间1,1上的减函数,所以最大值为 f。
7、第三篇 导数及其应用专题 3.02 利用导数研究函数的单调性【考试要求】1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小) 值的关系.【知识梳理】1.函数的单调性与导数的关系函数 yf(x) 在某个区间内可导,则:(1)若 f(x)0,则 f(x)在这个区间。
8、12.2 函数的单调性与最值A组 基础题组1.(教材习题改编)函数 y=(2m-1)x+b在 R上是减函数,则( )A.m B.m- D.mf(3)f(2)的只可能是( )(14)答案 D 因为 f f(3)f(2),所以函数 y=f(x)有增有减,排除 A,B.在 C中,f f(0),即 f f(cosB) B.f(sinA)f(sinB) D.f(sinA)f(cosB),选 A.7.若函数 f(x)=2x+ (aR)在1,+)上是增函数,则实数 a的取值范围是( )axA.0,2 B.0,4C.(-,2 D.(-,4答案 C 由题意得 f(x)=2- 0 在1,+)上恒成立, 则 a(2x 2)min,又在1,+)上,ax2(2x2)min=2,a2,故选 C.8.(2018衢州高三联考)函数 y=x-|1-x|的单调递增区间为 . 答案 (-,1解析 y=x-|1-x。
9、2.10 函数的综合应用函数的综合应用 典例精析典例精析 题型一 抽象函数的计算或证明 例 1已知函数 f x对于任何实数 x,y 都有 fxyfxy2fxfy,且 f00. 求证: fx是偶函数. 证明因为对于任何实数 xy 都有 fxy。
10、2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做yf(x)的单调区间2函。
11、第二篇 函数及其性质专题2.02函数的单调性与最值【考试要求】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值。2.理解函数的单调性、最大值、最小值的作用和实际意义【知识梳理】 1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(。
12、2.2函数的单调性与最值最新考纲考情考向分析1.理解函数的单调性、最大(小)值及其几何意义2.会运用基本初等函数的图象分析函数的性质.以基本初等函数为载体,考查函数的单调性、单调区间及函数最值的确定与应用;强化对函数与方程思想、转化与化归思想、分类讨论思想的考查,题型既有选择、填空题,又有解答题.1.函数单调性的定义增函数减函数定义设函数yf(x)的定义域为A,区间MA,如果取区间M中任意两个值x1,x2,改变量xx2x10,则当yf(x2)f(x1)0时,就称函数yf(x)在区间M上是增函数yf(x2)f(x1)0时,就称函数yf(x)在区间M上是减函数图象自。
13、第二篇 函数及其性质专题2.02函数的单调性与最值【考试要求】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值。2.理解函数的单调性、最大值、最小值的作用和实际意义【知识梳理】1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严。
14、第二篇 函数及其性质专题 2.02 函数的单调性与最值【考试要求】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值。2.理解函数的单调性、最大值、最小值的作用和实际意义【知识梳理】1.函数的单调性(1)单调函数的定义增函数 减函数一般地,设函数 f(x)的定义域为 I:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x 2定义当 x1f(x2),那么就说函数 f(x)在区间 D 上是减函数图象描述自左向右看图象是上升的 自左向右看图象是下降的(2)单调区间的定义如果函数 yf(x )在区间 D 上是增函数或减函数,那么就说函数 y。
15、2.2函数的单调性考情考向分析以基本初等函数为载体,考查函数的单调性、单调区间的确定与应用;强化对函数与方程思想、转化与化归思想、分类讨论思想的考查,题型既有填空题,又有解答题函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调。
16、 3.2 导数的应用导数的应用 最新考纲 考情考向分析 1.了解函数单调性和导数的关系;能利用导数研 究函数的单调性, 会求函数的单调区间(其中多项 式函数一般不超过三次) 2.了解函数在某点取得极值的必要条件和充分条 件;会用导数求函数的极大值、极小值(其中多项 式函数一般不超过三次); 会求闭区间上函数的最 大值、最小值(其中多项式函数一般不超过三次) 3.会利用导数解决某些实际问题(生活中的优化 问题). 考查函数的单调性、 极值、 最值, 利用函数的性质求参数范围;与 方程、 不等式等知识相结合命题, 强化函数与方程思想、转化。
17、32 利用导数研究函数的单调性利用导数研究函数的单调性 教材梳理 1函数的单调性与导数 1在某个区间a,b内,如果 fx0,那么函数 yfx在这个区间内;如果 fx0fxkk0,构造函数 gxfxkxb 2对于不等式 xfxfx0,构造函数。
18、22 函数的单调性与最值函数的单调性与最值 教材梳理 1函数的单调性 1增函数与减函数 一般地,设函数 fx的定义域为 I: 如果对于定义域 I 内某个区间 D 上的自变量的值 x1,x2,当 x1 x2时,都有 fx1fx2,那么就说函数。
19、2.2 函数的单调性函数的单调性 典例精析典例精析 题型一 函数单调性的判断和证明 例 1讨论函数 fxax1x2 a12在2,上的单调性. 解析设 x1,x2 为区间2,上的任意两个数且 x1x2, 则 fx1fx2ax11x12ax21。