2019年山东省青岛市高考数学一模试卷文科含详细解答

把函数的图象上各点的横坐标缩短为原来的(纵坐标不变) , 再将图象向右平移个单位长度得到函数 g(x) ,则下列说法正确的是( ) Ag(x)在上单调递增 Bg(x)的图象关于对称 Cg(x)的最小正周期为 4 Dg(x)的图象关于 y 轴对称 5 (5 分)已知 x,y 满足约束条件,若的最大值为

2019年山东省青岛市高考数学一模试卷文科含详细解答Tag内容描述:

1、把函数的图象上各点的横坐标缩短为原来的(纵坐标不变) , 再将图象向右平移个单位长度得到函数 g(x) ,则下列说法正确的是( ) Ag(x)在上单调递增 Bg(x)的图象关于对称 Cg(x)的最小正周期为 4 Dg(x)的图象关于 y 轴对称 5 (5 分)已知 x,y 满足约束条件,若的最大值为 4,则实数 m 的值为( ) A2 B3 C4 D8 6 (5 分)赵爽是三国时代的数学家、天文学家,他为周髀算经一书作序时,介绍了“勾 股圆方图” , 亦称 “赵爽弦图” , 图中包含四个全等的直角三角形及一个小正方形 (阴影) 如 图,设 AB:BC1:3,若向弦图内随。

2、已知复数 z 满足(1i)z2i(i 为虚数单位) ,则 ( ) A1i B1+i C1+i D1i 2 (5 分)若集合 Mx|x1,NxZ|0x4,则(RM)N( ) A0 B0,1 C0,1,2 D2,3,4 3 (5 分)已知甲袋中有 1 个红球 1 个黄球,乙袋中有 2 个红球 1 个黄球,现从两袋中各随 机取一个球,则取出的两球中至少有 1 个红球的概率为( ) A B C D 4 (5 分) “ba0”是“”的( ) A充分不必要条件 B充要条件 C必要不充分条件 D既不充分也不必要条件 5 (5 分)在平面直角坐标系 xOy 中,角 的顶点在原点,始边与 x 轴的非负半轴重合,终 边经过点(3,1) ,则 cos2( 。

3、若 z+iz(i 是虚数单位) ,则|z|( ) A B2 C D3 3 (5 分)函数 f(x)log8x的一个零点所在的区间是( ) A (0,1) B (1,2) C (2,3) D (3,4) 4 (5 分)已知向量 (1,1) , (2,3) ,且 ( +m ) ,则 m( ) A B C0 D 5 (5 分) “”是“”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 6 (5 分)在区间上随机取一个数 x,则 sin2x 的值介于 0 到之间的概率为 ( ) A B C D 7 (5 分)如图为某几何体的三视图,则该几何体的表面积是( ) 第 2 页(共 24 页) A (12+4) B (6+2) C 。

4、设全集 UR,集合 Ax|2x1,Bx|1x5,则(UA)B 等于( ) A1,0) B (0,5 C1,0 D0,5 2 (5 分)若复数 z 满足 zi1+2i,则 z 的共轭复数的虚部为( ) Ai Bi C1 D1 3 (5 分)命题“xR,x3x2+10”的否定是( ) A不存在 x0R,+10 B存在 x0R,+10 Cx0R, D对任意的 xR,x3x2+10 4 (5 分)设 Sn为等差数列an的前 n 项和,且 4+a5a6+a4,则 S9( ) A72 B36 C18 D9 5 (5 分)已知直线 l 和两个不同的平面 ,则下列结论正确的是( ) A若 l,l,则 B若 ,l,则 l C若 l,l,则 D若 ,l,则 l 6 (5 分)在某项测量中,测得变量 N(1,2) 。

5、若复数 z,其中 i 为虚数单位,则下列结论正确的是( ) Az 的虚部为i B|z|2 Cz2为纯虚数 Dz 的共轭复数为1i 3 (5 分)执行如图所示的程序框图,若输入 a 的值为1,则输出的 S 的值是( ) A B C D 4 (5 分)若变量 x,y 满足,则 z2x+y 的最大值是( ) A B1 C2 D 5 (5 分)函数 f(x)是定义在 R 上的奇函数,且 f(1+x)f(1x) ,若 f(1)9,则 f (2019)( ) A9 B9 C3 D0 6 (5 分)已知直线 m,n 和平面 ,n,则“mn”是“m”的( ) A充分不必要条件 B必要不充分条件 第 2 页(共 25 页) C充要条件 D既不充分也不必要条件 7。

6、已知集合 Ax|x1,Bx|2x1,则( ) AABx|x0 BABx|x1 CABx|x1 DABR 2 (5 分)若复数 z 满足(1+i)z|3+4i|,则 z 的虚部为( ) A5 B C D5 3 (5 分)设 , 为两个不同平面,直线 m,则“”是“m”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 4 (5 分)已知双曲线 C:1(a0,b0)的一条渐近线方程为 y2x,则 C 的 离心率为( ) A B C D 5 (5 分)执行如图的程序框图,如果输出的 y 值为 1,则输入的 x 的值为( ) A0 Be C0 或 e D0 或 1 6 (5 分)某校有 1000 人参加某次模拟考试,其中数学考试成绩近。

7、若复数 x,其中 i 为虚数单位,则 ( ) A1+i B1i C1+i D1i 2 (5 分)已知集合 Ax|log3x1,Bx|0,则( ) AABx|1x3 BABx|0x2 CABx|1x2 DABx|0x3 3 (5 分)已知双曲线 C:1(a0,b0)的焦距为 10,点 P(1,2)在 C 的 渐近线上,则 C 的方程是( ) A B C D 4 (5 分)在等比数列an中,a11,8,则 a6的值为( ) A4 B8 C16 D32 5 (5 分)如图,ABC 中,ADAB,BEBC,则( ) A B C D 6 (5 分)设有下列四个命题: p1:若 ab,则 a2b2; p2:若 x0,则 sinxx; p3: “1”是“yf(x)为奇函数”的充要条件; p4: “等比数列an中,a1a2a。

8、已知集合 U0,1,2,3,4,5,6,A0,2,4,6,则UA( ) A0,2,4,6 B2,4,6 C1,3,5 D0,1,3,5 2 (5 分)设 z+2+i,则复数 z 的虚部为( ) A2 B2i C1 Di 3 (5 分)已知向量 (1,1) ,2 + (4,3) , (x,2) ,若 ,则 x 的值为 ( ) A4 B4 C2 D2 4 (5 分)已知双曲线 C:y21(a0)的焦距为 2,则 C 的渐近线方程为( ) Ayx Byx Cyx Dyx 5 (5 分)AQI 是表示空气质量的指数,AQI 指数值越小,表明空气质量越好,当 AQI 指数 值不大于 100 时称空气质量为“优良” 如图是某地 4 月 1 日到 12 日 AQI 指数值的统计 数据,。

9、已知复数 z(其中 i 为虚数单位) ,则|z|的值为( ) A B C D 3 (5 分)2019 年 1 月 1 日,济南轨道交通 1 号线试运行,济南轨道交通集团面向广大市民 开展“参观体验,征求意见”活动,市民可以通过济南地铁 APP 抢票,小陈抢到了三张 体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体 验活动,则小王被选中的概率为( ) A B C D 4 (5 分)已知双曲线1 的一个焦点 F 的坐标为(5,0) ,则该双曲线的渐近线 方程为( ) Ayx Byx Cyx Dyx 5 (5 分)随着我国经济实力的不断提升,居民收入也在不断增加。

10、设 , 为两个不同平面,直线 m,则“”是“m”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 4 (5 分)已知双曲线 C:1(a0,b0)的一条渐近线方程为 y2x,则 C 的 离心率为( ) A B C D 5 (5 分)执行如图的程序框图,如果输出的 y 值为 1,则输入的 x 的值为( ) A0 Be C0 或 e D0 或 1 6 (5 分)已知角 的顶点为坐标原点,始边为 x 轴的正半轴,且 cos,若点 M(x, 8)是角 终边上一点,则 x( ) A12 B10 C8 D6 第 2 页(共 24 页) 7 (5 分)若函数 f(x)2sin(x+2) cosx(0)的图象过点(0,2。

11、化简的结果是( ) A2cos 2 B2sin 2 C4sin 2+2cos2 D2sin 2+4cos2 5 (5 分)已知直线 l 和两个不同的平面 ,则下列结论正确的是( ) A若 l,l,则 B若 ,l,则 l C若 l,l,则 D若 ,l,则 l 6 (5 分)已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示为了了解该地区中 小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量和抽取 的高中生近视人数分别为( ) A200,20 B100,20 C200,10 D100,10 第 2 页(共 27 页) 7 (5 分)一个底面是正三角形,侧棱和底面垂直的三棱柱,其三视图如图所示若该三。

12、若集合 Ax|2x0,B2,1,0,1,2,则 AB( ) A2,1 B2,0 C1,0 D2,1,0 2 (5 分)若复数(2i) (a+i)的实部与虚部互为相反数,则实数 a( ) A3 B C D3 3 (5 分)某中学数学竞赛培训班共有 10 人,分为甲,乙两个小组,在一次阶段测试中两 个小组成绩的茎叶图如图所示,已知甲组 5 名同学成绩的平均数为 81,乙组 5 名同学成 绩的中位数为 73,则 xy 的值为( ) A2 B2 C3 D3 4(5 分) 从抛物线 y24x 在第一象限内的一点 P 引抛物线准线的垂线, 垂足为 M, 从且|PM| 4,设抛物线的焦点为 F,则直线 PF 的斜率为( ) A B C D2 5 。

13、已知集合 A1,2,3,4,B2,4,6,则集合 AB 中元素的个数为( ) A3 B4 C5 D6 2 (5 分)已知复数 za+i,aR,若|z|2,则 a 的值为( ) A1 B C1 D 3 (5 分)已知向量 (+2,) , (,1) ,若 ,则实数 的值为( ) A0 或 3 B3 或 0 C3 D3 4 (5 分)设 a,b(1,+) ,则“ab”是“logab1”的( ) A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 5 (5 分)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分 布饼状图、90 后从事互联网行业岗位分布条形图,则下列结论中不一定正。

14、在复平面内,复数(i 为虚数单位)对应的点在( ) A第一象限 B第二象限 C第三象限 D第四象限 2 (5 分)已知集合 Ax|3x1,Bx|x+10,则 AB( ) A (,1) B (,0) C (1,0) D (1,1) 3 (5 分)已知 8 位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( ) A众数为 7 B极差为 19 C中位数为 64.5 D平均数为 64 4 (5 分)已知双曲线的一个焦点 F(2,0) ,一条渐近线的斜率 为,则该双曲线方程为( ) A B C D 5 (5 分)将函数的图象向左平移个单位,得到函数 g(x)的图象, 则下列说法正确的是( ) Ag(x)的最小正。

15、已知集合 Ax|log3x1,Bx|0,则( ) AABx|1x3 BABx|0x2 CABx|1x2 DABx|0x3 3 (5 分)已知双曲线 C:1(a0,b0)的焦距为 10,点 P(1,2)在 C 的 渐近线上,则 C 的方程是( ) A B C D 4 (5 分)如图,ABC 中,ADAB,BEBC,则( ) A B C D 5 (5 分)将函数 ysin2xcos2x 的图象向左平移个单位长度,所得图象对应的函数 ( ) A最小正周期为 B关于 x对称 C关于点(,0)对称 D在,上单调递减 第 2 页(共 25 页) 6 (5 分)设有下列四个命题: p1:若 ab,则 a2b2; p2:若 x0,则 sinxx; p3: “1”是“yf(x)为奇函数”的充要条。

16、若 z(i+1) (i2) ,则复数 z 的虚部是( ) A1 B1 C3 D3 2 (5 分)已知集合 Ax|x22x30,Bx|yln(2x),则 AB( ) A3,2) B (2,3 C1,2) D (1,2) 3 (5 分)已知向量 (3,2) , (1,1) ,若( + ) ,则实数 ( ) A1 B C1 D 4 (5 分)某学校从编号依次为 01,02,90 的 90 个学生中用系统抽样(等间距抽样) 的方法抽取一个样本,已知样本中相邻的两个组的编号分别为 14,23,则该样本中来自 第四组的学生的编号为( ) A32 B33 C41 D42 5 (5 分)将函数 f(x)sin(2x+)的图象向左平移个单位长度后,得到函数 g(x) 。

17、为了检验设备 M 与设备 N 的生产效率,研究人员作出统计,得到如表所示的结 果,则 设备 M 设备 N 生产出的合格产品 48 43 生产出的不合格产品 2 7 附: P(K2k0) 0.15 0.10 0.050 0.025 0.010 k0 2.072 2.706 3.841 5.024 6.635 参考公式:,其中 na+b+c+d ( ) A有 90%的把握认为生产的产品质量与设备的选择具有相关性 B没有 90%的把握认为生产的产品质量与设备的选择具有相关性 C可以在犯错误的概率不超过 0.01 的前提下认为生产的产品质量与设备的选择具有相 关性 D 不能在犯错误的概率不超过 0.1 的前提下认为生产的产品质量与设备。

18、已知集合 AxR|x29,集合 BxR|2x6,则 AB( ) A3,6 B (3,6) C (,32,+) D (,33,+) 2 (5 分)已知 i 为虚数单位,实数 a,b 满足(2i) (abi)(8i)i,则 ab 的值 为( ) A6 B6 C5 D5 3 (5 分)已知 x,y 满足约束条件,则的最小值是( ) A3 B C0 D3 4 (5 分)已知函数图象的相邻两对称中心的 距离为,且对任意 xR 都有,则函数 yf(x)的一个单调递 增区间可以为( ) A B C D 5 (5 分)执行如图所示的程序框图,则输出 k 的值为( ) 第 2 页(共 27 页) A7 B6 C5 D4 6 (5 分) 过抛物线 y22px(p0)的焦点 F 作倾。

19、已知集合 Ax|x24x0,BxZ|2x2,则 AB( ) A0,1,2 B1,2 C1,0,1 D1,0,1,2 2 (5 分)已知复数 z 满足,则 z( ) A1i B12i C1+i D1+2i 3 (5 分)已知命题 p:x(0,) ,tanxsinx;命题 q:x0,x22x,则下列命题为真 命题的是( ) Apq B(pq) Cp(q) D (p)q 4 (5 分)已知角 的终边经过点(2,3) ,将角 的终边顺时针旋转后得到角 , 则 tan( ) A B5 C D5 5 (5 分)已知向量 (,| |,且 ( ) ,则( + ) ( 3 ) ( ) A15 B19 C15 D19 6 (5 分)已知,c0.3lg1,则( ) Acab Bbca Ccba Dacb 7 (5 分)如图,网格纸。

20、已知集合 A1,2,3,4,5,6,7,集合 BxN|2x6,则 AB( ) A1,2,3,5,6,7 B2,3,4,5 C2,3,5 D2,3 2 (5 分)已知 i 为虚数单位,复数 z 满足(2i)z3+2i,则 z 在复平面内对应的点位于 ( ) A第一象限 B第二象限 C第三象限 D第四象限 3(5 分)“结绳计数” 是远古时期人类智慧的结晶, 即人们通过在绳子上打结来记录数量 如 图所示的是一位农民记录自己采摘果实的个数 在从右向左依次排列的不同绳子上打结, 满四进一根据图示可知,农民采摘的果实的个数是( ) A493 B383 C183 D123 4 (5 分)调查机构对某高科技行业进行调。

【2019年山东省青岛市高考数】相关DOC文档
标签 > 2019年山东省青岛市高考数学一模试卷文科含详细解答[编号:103854]