2.2.4第1课时均值不等式 学案含答案

第二章 一元二次函数方程和不等式 2.32.3 二次函数与一元二次方程不等式二次函数与一元二次方程不等式 第第1 1课时课时 一元二次不等式及其解法一元二次不等式及其解法 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 ,第二章 一元二次函数方程和不等式 2.22.2 基本不等式

2.2.4第1课时均值不等式 学案含答案Tag内容描述:

1、第二章 一元二次函数方程和不等式 2.32.3 二次函数与一元二次方程不等式二次函数与一元二次方程不等式 第第1 1课时课时 一元二次不等式及其解法一元二次不等式及其解法 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 。

2、第二章 一元二次函数方程和不等式 2.22.2 基本不等式基本不等式 第第1 1课时课时 基本不等式基本不等式 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.了解基本不等式的证明过程重 点 2能利用基本不等式证。

3、第2课时二次函数、二次方程及简单的一元二次不等式学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一一元二次方程的根的判别式一元二次方程ax2bxc0(a0),用配方法将其变形为2.(1)当b24ac0时,右端是正数.因此,方程有两个不相等的实数根:x1,2;(2)当b24ac0时,右端是零.因此,方程有两个相等的实数根:x1,2;(3)当b24ac0时,右端是负数.因此,方程没有实数根.由于可以用b24ac的取值情况来判定一元二次方程的根的情况.因此,把b2。

4、第2课时二次函数、二次方程及简单的一元二次不等式学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一一元二次方程的根的判别式一元二次方程ax2bxc0(a0),用配方法将其变形为2.(1)当b24ac0时,右端是正数.因此,方程有两个不相等的实数根:x1,2;(2)当b24ac0时,右端是零.因此,方程有两个相等的实数根:x1,2;(3)当b24ac0时,右端是负数.因此,方程没有实数根.由于可以用b24ac的取值情况来判定一元二次方程的根的情况.因此,把b2。

5、9.2 一元一次不等式第 1 课时 一元一次不等式的解法关键问答一元一次不等式和一元一次方程的相同之处与不同之处是什么?解一元一次不等式移项的依据是什么?解一元一次不等式的步骤是什么?1 下列各式中,是一元一次不等式的是( )A548 B2x1 C2x5 D. 3x 01x2 在下列不等式 的变形过程中,错误的步骤是( )2 x3 2x 15去分母,得 5(2x)3(2x 1); 去括号,得 105x6x3;移项、合并同类项,得x13; 系数化为 1,得 x13.A B C D3不等式 4x1 的正整数解为_4 解不等式 x 1,并将解集表示在如图 921 所示的数轴上x 13图 921命题点 1 一元一次不等式的定。

6、第二章 一元二次函数方程和不等式 2.12.1 等式性质与不等式性质等式性质与不等式性质 第第1 1课时课时 不等关系与不等式不等关系与不等式 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.会用不等式组表示实际。

7、4简单线性规划4.1二元一次不等式(组)与平面区域第1课时二元一次不等式与平面区域一、选择题1下列选项中与点(1,2)位于直线2xy10的同一侧的是()A(1,1) B(0,1) C(1,0) D(1,0)考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案D解析212110,点(1,2)位于2xy10表示的平面区域内,而四个点(1,1),(0,1),(1,0),(1,0)中只有(1,0)满足2xy10.2设点P(x,y),其中x,yN,满足xy3的点P的个数为()A10 B9 C3 D无数个考点二元一次不等式(组)题点用二元一次不等式(组)表示平面区域答案A解析作的平面区域如图所示,符合要求的点P。

8、3.23.2 函数与方程、不等式之间的关系函数与方程、不等式之间的关系 第第 1 1 课时课时 函数的零点及其与对应方程、不等式解集之间的函数的零点及其与对应方程、不等式解集之间的 关系关系 学习目标 1.体会函数零点的概念以及函数零点与方程根的关系.2.通过一元二次函数的零 点问题解一元二次不等式.3.了解高次不等式的解法 知识点一 函数零点的概念 (1)一般地,如果函数 yf(x)在实数 处。

9、第第 3 课时课时 三个正数的算术三个正数的算术几何平均不等式几何平均不等式 学习目标 1.理解定理3.2.能用定理3及其推广证明一些不等式.3.会用定理解决函数的最值 或值域问题.4.能运用三个正数的算术几何平均不等式解决简单的实际问题 知识点 三项均值不等式 思考 类比基本不等式:ab 2 ab(a0,b0),请写出 a,b,cR时,三项的均值不 等式 答案 abc 3 3abc. 梳理 (。

10、第第 2 2 课时课时 一元二次不等式的应用一元二次不等式的应用 学习目标 1.经历从实际情境中抽象出一元二次不等式的过程了解一元二次不等式的现实 意义.2.能够构建一元二次函数模型,解决实际问题 知识点一 简单的分式不等式的解法 分式不等式的解法: 思考 x3 x20 与(x3)(x2)0 等价吗? x3 x20 与(x3)(x2)0 等价吗? 答案 x3 x20 与(x3)(x2)0 等价。

11、第第 2 课时课时 绝对值不等式的解法绝对值不等式的解法 学习目标 1.会利用绝对值的几何意义求解以下类型的不等式:|axb|c,|axb|c,|x a|xb|c,|xa|xb|c.2.理解并掌握绝对值不等式的几种解法,并能根据不等式 的结构特征选择适当方法求解 知识点一 |axb|c 和|axb|c 型不等式的解法 思考 1 |x|2 说明实数 x 有什么特征? 答案 x 在数轴上对应的点。

12、3 3. .3.23.2 从函数观点看一元二次不等式从函数观点看一元二次不等式 第第 1 1 课时课时 一元二次不等式的解法一元二次不等式的解法 学习目标 1.从函数观点看一元二次方程了解二次函数的零点与方程根的关系.2.从函数观 点看一元二次不等式经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等 式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系 知。

13、第第 2 2 课时课时 不等式的证明方法不等式的证明方法 学习目标 1.掌握综合法、分析法证明问题的过程和推理特点,能灵活选用综合法、分析法 证明简单问题.2.了解反证法的定义,掌握反证法的推理特点掌握反证法证明问题的一般步 骤,能用反证法证明一些简单的命题 知识点一 综合法 从已知条件出发,综合利用各种结果,经过逐步推导最后得到结论的方法综合法最重要的 推理形式为 pq,其中 p 是已知或者已。

14、二二 绝对值不等式绝对值不等式 第第 1 课时课时 绝对值三角不等式绝对值三角不等式 学习目标 1.进一步理解绝对值的意义.2.理解并掌握绝对值三角不等式(定理 1)及其几何解 释,理解多个实数的绝对值不等式(定理 2).3.会用定理 1、定理 2 解决简单的绝对值不等式问 题 知识点 绝对值三角不等式 思考 1 实数 a 的绝对值|a|的几何意义是什么? 答案 |a|表示数轴上以 a 为坐标的。

15、第第 2 课时课时 基本不等式基本不等式 学习目标 1.理解并掌握重要不等式(定理 1)和基本不等式(定理 2).2.能运用这两个不等式 解决函数的最值或值域问题, 能运用这两个不等式证明一些简单的不等式.3.能运用基本不等 式(定理 2)解决某些实际问题 知识点 基本不等式 思考 回顾 a2b22ab 的证明过程,并说明等号成立的条件 答案 a2b22ab(ab)20,即 a2b22ab, 当。

16、一一 不等式不等式 第第 1 课时课时 不等式的基本性质不等式的基本性质 学习目标 1.理解不等式的性质,会用不等式的性质比较大小.2.能运用不等式的性质证明 简单的不等式、解决不等式的简单问题 知识点 不等式的基本性质 思考 你认为可以用什么方法比较两个实数的大小? 答案 作差,与 0 比较类比等式的基本性质,联想并写出不等式的基本性质 梳理 (1)两个实数 a,b 的大小关系 (2)不等式。

17、第第 2 2 课时课时 均值不等式的综合应用均值不等式的综合应用 学习目标 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问 题.3.能够运用均值不等式解决生活中的应用问题 知识点 用均值不等式求最值 两个正数的和为常数时,它们的积有最大值;两个正数的积为常数时,它们的和有最小值 (1)已知 x,y 都是正数,如果和 xy 等于定值 S,那么当 xy 时,积 xy 。

【2.2.4第1课时均值不等式 学】相关PPT文档
【2.2.4第1课时均值不等式 学】相关DOC文档
标签 > 2.2.4第1课时均值不等式 学案含答案[编号:128366]