2 2. .2.22.2 不等式的解集不等式的解集 学习目标 1.了解不等式(组)解集的概念,会求简单的一元一次不等式(组)的解集.2.了解含 绝对值不等式的几何意义,能借助于数轴解含有绝对值的不等式.3.掌握数轴上两点间的距离 公式及中点坐标公式 知识点一 不等式的解集与不等式组的解集 1不等式的
2.2.2 向量的减法 学案含答案Tag内容描述:
1、2 2. .2.22.2 不等式的解集不等式的解集 学习目标 1.了解不等式(组)解集的概念,会求简单的一元一次不等式(组)的解集.2.了解含 绝对值不等式的几何意义,能借助于数轴解含有绝对值的不等式.3.掌握数轴上两点间的距离 公式及中点坐标公式 知识点一 不等式的解集与不等式组的解集 1不等式的解集:不等式的所有解组成的集合称为不等式的解集 2不等式组的解集:对于由若干个不等式联立得到的不等。
2、6 6. .2.22.2 向量的减法运算向量的减法运算 1.如图所示,在ABCD 中,ABa,ADb,则用 a,b 表示向量AC和BD分别是 Aab 和 ab Bab 和 ba Cab 和 ba Dba 和 ba 答案 B 解析 由向量的加。
3、第二节第二节 群落的动态群落的动态 情景导入 课标导航 课程标准 1.举例总结群落演替的过程。 2.理解群落的稳定性。 3.活动建议:探究水族箱(或鱼缸)中群落的演替。 关键术语 群落的演替 初生演替、次生演替 顶极群落 对干扰的抵抗能力和恢复能力 群落的演替 基础梳理 1概念 某一地段上一种生物群落被另一生物群落所取代的过程。 2规律 朝着一个方向连续变化的过程。 3原因 群落内部关系(包括种内和种间关系)和外部环境中各种生态因子综合作用的结果。控制演替 的主要因素有: (1)群落内部因素。 (2)外界环境因素。 (3)人类活动。人类活动。
4、6.2.2 向量的减法运算向量的减法运算 学习目标 1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意 义.3.能熟练地进行向量的加、减综合运算. 知识点一 相反向量 1.定义:与向量 a 长度相等,方向相反的向量,叫做 a 的相反向量,记作a. 2.性质 (1)零向量的相反向量仍是零向量. (2)对于相反向量有:a(a)(a)a0. (3)若 a,b 互为相反向量,则 ab,ba,ab0. 知识点二 向量的减法 1.定义:向量 a 加上 b 的相反向量,叫做 a 与 b 的差,即 aba(b),因此减去一个向 量,相当于加上这个向量的相反向量,求两个向量差的运算。
5、6 6. .2.22.2 向量的减法运算向量的减法运算 基础达标 一选择题 1.化简PMPNMN所得的结果是 A.MP B.NP C.0 D.MN 解析 PMPNMNNMMN0. 答案 C 2.如图,D,E,F 分别是ABC 的边 AB,B。
6、2.1.3向量的减法一、选择题1.化简所得的结果是()A. B. C.0 D.答案C解析0.2.已知一点O到ABCD的3个顶点A,B,C的向量分别是a,b,c,则向量等于()A.abc B.abc C.abc D.abc答案B解析如图所示,abc.故选B.3.在平行四边形ABCD中,下列结论错误的是()A.0 B.C. D.0答案C解析,0,A正确;,B正确;,C错误;,0,D正确.4.如图,D,E,F分别是ABC的边AB,BC,CA的中点,则()A.0B.0C.0D.0答案A解析()0.5.在边长为1的正三角形ABC中,|的值为()A.1 B.2 C. D.答案D解析如图,作菱形ABCD,则|.6。
7、2.2向量的减法一、选择题1化简所得的结果是()A. B. C0 D.答案C解析0.2在平行四边形ABCD中,等于()A. B. C. D.考点向量加减法的综合运算及应用题点利用向量的加、减法化简向量答案C解析在平行四边形ABCD中,所以().3在平行四边形ABCD中,下列结论错误的是()A.0 B.C. D.0答案C解析,0,A正确;,B正确;,C错误;,0,D正确4.如图,D,E,F分别是ABC的边AB,BC,CA的中点,则()A.0B.0C.0D.0答案A解析()0.5下列四个式子中可以化简为的是();.A B C D答案A解析因为,所以正确,排除C,D;。
8、6.2.2 向量的减法运算向量的减法运算 A 组组 基础题基础题 一选择题一选择题 1在平行四边形 ABCD 中,下列结论错误的是 AABDC0 BADBAAC CABADBD DADCB0 2在ABC 中,BCa,CAb,则AB等于 Aa。
9、2.2.2向量的正交分解与向量的直角坐标运算一、选择题1.已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A.(4,2) B.(4,2) C.(4,2) D.(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(31,02)(4,2),故选D.2.已知ab(1,2),ab(4,10),则a等于()A.(2,2) B.(2,2) C.(2,2) D.(2,2)答案D3.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A.2,1 B.1,2 C.2,1 D.1,2答案D解析由解得4.在ABCD中,已知(3,7),(2,3),对角线AC,BD相交于点O,则的坐标是()A. B.C. D.答案B解析()(2,3)(3,7),故选B.5.已知向量a(5,2),。
10、2.2向量的减法基础过关1在平行四边形ABCD中,=()A. B. C. D.解析.答案A2下列等式中正确的个数为()0aa;(a)a;a(a)0;a0a;aba(b);a(a)0.A3B4C5D6解析根据相反向量的概念知正确,所以正确的个数为5.故选C.答案C3在平行四边形ABCD中,下列结论错误的是()A.0 B.C. D.0解析,0,A正确;,B正确;,C错误;,0,D正确答案C4已知O、A、B是平面上的三个点,直线AB上有一点C满足20,则可用、表示为_解析22(),2.答案25若向量a,b满足|a|8,|b|12,则|ab|的最小值为_,|ab|的最大值为_解析当a与b方向相反时,|ab|取得最小。
11、21.3向量的减法基础过关1下列结论中,正确的是()A000B对于任意向量a,b,abbaC对于任意向量a,b,|ab|0D若向量,且|2,|2008,则|2010答案B2化简的结果等于()A. B. C. D.答案B3.可以写成:;,其中正确的是()ABCD答案D解析由向量的加法及减法定义可知4如图,D、E、F分别是ABC的边AB、BC、CA的中点,则()A.0B.0C.0D.0答案A解析()0.5在边长为1的正三角形ABC中,|的值为()A1 B2C. D.答案D解析作菱形ABCD,则|.6.如图所示,在梯形ABCD中,ADBC,AC与BD交于O点,则_.答案7已知O为平行四边形A。
12、22.2向量的正交分解与向量的直角坐标运算基础过关1给出下面几种说法:相等向量的坐标相同;平面上一个向量对应于平面上唯一的坐标;一个坐标对应于唯一的一个向量;平面上一个点与以原点为始点,该点为终点的向量一一对应其中正确说法的个数是()A1 B2 C3 D4答案C解析由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故错误2已知向量a(2,4),b(1,1),则2ab等于()A(5,7) B(5,9)C(3,7) D(3,9)答案A解析2ab(4,8)(1,1)(5,7)3已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A2,1 B1,2C2,1 D1,2答案D解析由解得4已知M(。
13、22.2 向量减法运算及其几何意义向量减法运算及其几何意义 一、选择题 1化简PM PN MN 所得的结果是( ) A.MP B.NP C0 D.MN 考点 向量加减法的综合运算及应用 题点 利用向量的加、减法化简向量 答案 C 解析 PM PN MN NM MN 0. 2在平行四边形 ABCD 中,AB CBDC 等于( ) A.BC B.AC C.DA D.BD 考点 向量加减法的综合。
14、2.2.2 向量减法运算及其几何意义向量减法运算及其几何意义 基础过关 1化简AB BD AC CD ( ) AAD BDA CBC D0 解析 AB BD AC CD (AB BD )(AC CD )AD AD 0 答案 D 2下列等式中,正确的个数为( ) 0aa;(a)a;a(a)0;a0a;aba(b);a( a)0 A3 B4 C5 D6 解析 根据相反向量的概念知正确,所以正确的。
15、2.2.2向量的正交分解与向量的直角坐标运算学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一平面向量的正交分解如果基底的两个基向量e1,e2互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.知识点二平面向量的坐标表示(1)基底:在直角坐标系xOy内,分别取与x轴和y轴方向相同的两个单位向量e1,e2.这时,我们就在坐标平面内建立了一个正交基底e1,e2.这个基底也叫做直角坐标系xOy的基底.(2。
16、2.1.3向量的减法学习目标1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算.知识点一向量的减法(1)已知向量a,b(如图),作a,作b,则ba,向量叫做向量a与b的差,并记作ab,即ab.(2)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量.(3)一个向量等于它的终点相对于点O的位置向量减去它的始点相对于点O的位置向量,或简记“终点向量减始点向量”.知识点二相反向量(1)与向量a方向相反且等长的向量叫做a的相反向量,记作a(如图).。
17、2.2向量的减法学习目标1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算知识点一相反向量与a长度相等、方向相反的向量,叫作a的相反向量,记作a.(1)规定:零向量的相反向量仍是零向量(2)(a)a.(3)a(a)(a)a0.(4)若a与b互为相反向量,则ab,ba,ab0.知识点二向量的减法1定义:向量a加上b的相反向量,叫作a与b的差,即aba(b)求两个向量差的运算,叫作向量的减法2.几何意义:在平面内任取一点O,作a,b,则向量ab,如图所示3文字叙述:如果把向量a与b的起点放在O点,那么由向量b的终。
18、22.2 向量减法运算及其几何意义向量减法运算及其几何意义 学习目标 1.理解相反向量的含义,向量减法的意义及减法法则.2.掌握向量减法的几何意 义.3.能熟练地进行向量的加、减运算 知识点一 相反向量 1定义:与 a 长度相等,方向相反的向量,叫做 a 的相反向量,记作a. 2性质 (1)对于相反向量有:a(a)(a)a0. (2)若 a,b 互为相反向量,则 ab,ba,ab0. (3)零向。
19、2.2.2向量的减法基础过关1.在平行四边形ABCD中,下列结论错误的是()A.0 B.C D.0解析,0,A正确;,B正确;,C错误;,0,D正确.答案C2.已知O是四边形ABCD所在平面内的一点,且满足,则四边形ABCD的形状是()A.梯形 B.平行四边形C.矩形 D.菱形解析,BA綊CD,四边形ABCD是平行四边形.答案B3.如图,在矩形ABCD中,O是对角线AC与BD的交点,若a,b,c,则a(bc)_.解析a(bc)()()()c.答案c4.如图,在四边形ABCD中,根据图示填空(用小写字母表示):ab_,bc_,cd_,abcd_.解析abf;bce;cdf;a。
20、2.2.2向量的减法学习目标1.理解向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算知识点向量的减法1.向量减法的定义若bxa,则向量x叫做a与b的差,记为ab,求两个向量差的运算,叫做向量的减法2向量的减法法则以O为起点,作向量a,b,则ab,即当向量a,b起点相同时,从b的终点指向a的终点的向量就是ab.思考若a,b是不共线向量,|ab|与|ab|的几何意义分别是什么?答案如图所示,设a,b.根据向量加法的平行四边形法则和向量减法的三角形法则,有ab,ab.因为四边形OACB是平行四边形,所以|ab|,|ab|,分别是。