22.2向量的正交分解与向量的直角坐标运算 基础过关 1给出下面几种说法: 相等向量的坐标相同; 平面上一个向量对应于平面上唯一的坐标; 一个坐标对应于唯一的一个向量; 平面上一个点与以原点为始点,该点为终点的向量一一对应 其中正确说法的个数是() A1 B2 C3 D4 答案C 解析由向量坐标的定
2.1.1 向量的概念同步练习含答案Tag内容描述:
1、22.2向量的正交分解与向量的直角坐标运算基础过关1给出下面几种说法:相等向量的坐标相同;平面上一个向量对应于平面上唯一的坐标;一个坐标对应于唯一的一个向量;平面上一个点与以原点为始点,该点为终点的向量一一对应其中正确说法的个数是()A1 B2 C3 D4答案C解析由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故错误2已知向量a(2,4),b(1,1),则2ab等于()A(5,7) B(5,9)C(3,7) D(3,9)答案A解析2ab(4,8)(1,1)(5,7)3已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A2,1 B1,2C2,1 D1,2答案D解析由解得4已知M(。
2、6.2.2 向量的减法运算向量的减法运算 A 组组 基础题基础题 一选择题一选择题 1在平行四边形 ABCD 中,下列结论错误的是 AABDC0 BADBAAC CABADBD DADCB0 2在ABC 中,BCa,CAb,则AB等于 Aa。
3、6.2.4 向量的数量积向量的数量积 A 组 素养自测 一选择题 1已知ABC 中,ABa,ACb,若 a b0,则ABC 是 A钝角三角形 B直角三角形 C锐角三角形 D任意三角形 2对于向量 abc 和实数 ,下列命题中真命题是 A若 。
4、6.2.1 向量的加法运算向量的加法运算 一选择题 1.已知 a,b,c 是非零向量,则acb,bac,bca,cab,cba中,与向量abc 相等的个数为 A.5 B.4 C.3 D.2 2.若向量 a 表示向东航行 1 km,向量 b 。
5、2.2.3向量的数乘基础过关1.若2(ya)(cb3y)b0,其中a,b,c为已知向量,则向量y()A.abc B.abcC.abc D.abc解析由2(cb3y)b0,得2yacbyb0,yabc,yabc.答案D2.在四边形ABCD中,3e,5e,且|,则四边形ABCD是()A.等腰梯形 B.矩形C.菱形 D.平行四边形解析,ABCD且ABCD,又|,四边形ABCD是等腰梯形.答案A3.已知a,b是不共线的向量,ab,ab(,R),那么A,B,C三点共线的条件是_.解析由ab,ab(,R)及A,B,C三点共线得:t,所以abt(ab)tatb,即可得所以1.答案14.若|a|3,b与a的方向相反,且|b|5,则a_b.解析由b与a方向相反,设ab(&。
6、1.2复数的有关概念一、选择题1已知z(m3)(m1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A(3,1) B(1,3)C(1,) D(,3)2已知a为实数,若复数z(a23a4)(a4)i为纯虚数,则复数aai在复平面内对应的点位于()A第一象限 B第二象限C第三象限 D第四象限3已知复数z1a2i,z22i,若|z1|1Ca0 Da04下列几个命题:两个复数相等的一个必要条件是它们的实部相等;两个复数不相等的一个充分条件是它们的虚部不相等;1ai(aR)是一个复数;虚数的平方不小于0;1的平方根只有一个,即为i;i是方程x410的一个根;i是一个无理数其中正确命题的个数为()A3 B。
7、第五章数系的扩充与复数的引入1数系的扩充与复数的引入11数的概念的扩展一、选择题1设a,bR,“a0”是“复数abi是纯虚数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件2下列命题正确的是()A若aR,则(a1)i是纯虚数B若a,bR且ab,则aibiC若(x21)(x23x2)i是纯虚数,则实数x1D两个虚数不能比较大小3以2i的虚部为实部,以i2i2的实部为虚部的新复数是()A22i BiC2i D.i4若(xy)ix1(x,yR),则2xy的值为()A. B2 C0 D15若复数z(x21)(x1)i为纯虚数,则实数x的值为()A1 B0 C1 D1或16若复数z(cos )(sin )i是纯虚数(i为虚数单位)。
8、11任意角的概念与弧度制11.1角的概念的推广基础过关1设A|为锐角,B|为小于90的角,C|为第一象限的角,D|为小于90的正角,则下列等式中成立的是()AAB BBCCAC DAD答案D2与405角终边相同的角是()Ak36045,kZ Bk18045,kZCk36045,kZ Dk18045,kZ答案C3.如图,终边落在直线yx上的角的集合是()A|k36045,kZB|k18045,kZC|k18045,kZD|k。
9、蛋白质的结构与功能蛋白质的结构与功能 基础巩固 1下列关于氨基酸的说法中,正确的是( ) A氨基酸是蛋白质的组成单位,是由氨基和羧基组成的 B每个氨基酸分子都含有一个氨基和一个羧基 C氨基酸的种类共有 20 种 D氨基酸是酸碱两性化合物,分子中至少含有一个氨基和一个羧基,并连在同一个碳原子 上 答案 D 解析 由氨基酸的结构通式可知, 氨基酸是酸碱两性化合物, 至少含有一个氨基和一个羧基, 且连在同一个碳原子上。 2下列化合物中,是构成蛋白质的氨基酸的是( ) 答案 A 解析 根据组成生物体蛋白质的氨基酸的特点:至少含有一个氨基(NH。
10、2.1.2向量的加法基础过关1下列三个命题:若ab0,bc0,则ac;的等价条件是点A与点C重合,点B与点D重合;若ab0且b0,则a0.其中正确命题的个数是()A1 B2 C3 D0答案B解析中,ab0,a、b的长度相等且方向相反又bc0,b、c的长度相等且方向相反,a、c的长度相等且方向相同,故ac,正确中,当时,应有|及由A到B与由C到D的方向相同,但不一定要有点A与点C重合,点B与点D重合,故错显然正确2如图,在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa。
11、21.3向量的减法基础过关1下列结论中,正确的是()A000B对于任意向量a,b,abbaC对于任意向量a,b,|ab|0D若向量,且|2,|2008,则|2010答案B2化简的结果等于()A. B. C. D.答案B3.可以写成:;,其中正确的是()ABCD答案D解析由向量的加法及减法定义可知4如图,D、E、F分别是ABC的边AB、BC、CA的中点,则()A.0B.0C.0D.0答案A解析()0.5在边长为1的正三角形ABC中,|的值为()A1 B2C. D.答案D解析作菱形ABCD,则|.6.如图所示,在梯形ABCD中,ADBC,AC与BD交于O点,则_.答案7已知O为平行四边形A。
12、2.5向量的应用基础过关1.点P在平面上做匀速直线运动,速度v(4,3),设开始时点P的坐标为(10,10),则5秒后点P的坐标为()A.(2,4) B.(30,25)C.(10,5) D.(5,10)解析5秒后点P的坐标为(10,10)5(4,3)(10,5).答案C2.已知点A(2,3),B(19,4),C(1,6),则ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形解析(21,7),(1,3),0,即,则A90,所以ABC是直角三角形.答案C3.已知点A(2,1),则过点A与向量b(1,2)垂直的直线方程为_.解析设所求直线上任意一点P的坐标为(x,y),A(2,1),(x2,y1).由题意知b,(x2)(1)(y1)20,即x。
13、2.2向量的线性运算2.2.1向量的加法基础过关1.已知下列各式:;();.其中结果为0的有()A.1个 B.2个 C.3个 D.4个解析0;()()()0;0;()()0.故结果为0的是.答案B2.如图所示,在平行四边形ABCD中,有以下四个等式:;0.其中正确的式子有()A.4个 B.3个 C.2个 D.1个解析由平行四边形法则知正确;错误,;错误,;正确,则0.答案C3.已知向量a表示“向东航行1 km”,向量b表示“向南航行1 km”,则向量ab表示_ km.解析由平行四边形法则可得ab表示向东南航行 km.答案向东南航行4.如图所示,在正六边形ABCDEF中,若AB1,则|_.解析|。
14、2.2.2向量的减法基础过关1.在平行四边形ABCD中,下列结论错误的是()A.0 B.C D.0解析,0,A正确;,B正确;,C错误;,0,D正确.答案C2.已知O是四边形ABCD所在平面内的一点,且满足,则四边形ABCD的形状是()A.梯形 B.平行四边形C.矩形 D.菱形解析,BA綊CD,四边形ABCD是平行四边形.答案B3.如图,在矩形ABCD中,O是对角线AC与BD的交点,若a,b,c,则a(bc)_.解析a(bc)()()()c.答案c4.如图,在四边形ABCD中,根据图示填空(用小写字母表示):ab_,bc_,cd_,abcd_.解析abf;bce;cdf;a。
15、2导数的概念及其几何意义2.1导数的概念一、选择题1一质点运动的方程为s53t2,若该质点在时间段1,1t内相应的平均速度为3t6,则该质点在t1时的瞬时速度是()A3 B3 C6 D62若可导函数f(x)的图像过原点,且满足 1,则f(0)等于()A2 B1C1 D23物体的运动方程是s4t216t,在某一时刻的速度为零,则相应时刻为()At1 Bt2Ct3 Dt44函数yf(x)13x在x2处的导数为()A3 B2 C5 D15已知f(x)x210,则f(x)在x处的瞬时变化率是()A3 B3 C2 D26一个物体的运动方程为s(2t1)2,其中s的单位是米,t的单位是秒,那么该物体在1秒末的瞬时速度是()A10 米/秒 B8 米/秒C12 米。
16、 第一节第一节 种群种群的特征的特征 考查知识点及角度 难度及题号 基础 中档 稍难 种群及特征 1、2、5 6、8 7 种群密度调查 3、4、9 10 一、选择题(共 8 小题,每小题 4 分,共 32 分) 1下列能称之为种群的是( )。 A一个池塘中的全部鱼 B一片草原上的全部草本植物 C一块棉田中的全部昆虫 D一片森林中的全部山毛榉 解析 种群指在一定时间占据一定区域的同种生物的全部个体。出错原因是没有真正理解 “种群”概念的内涵。草木植物包括各种各样的草类,同一个池塘里的鱼,一块棉田中的全 部昆虫,这些都不是一个种群,因为“鱼”“昆虫”都。
17、6.1 平面向量的概念平面向量的概念 一选择题 1.下列说法中,正确的个数是 时间摩擦力重力都是向量; 向量的模是一个正实数; 相等向量一定是平行向量; 向量 a 与 b 不共线,则 a 与 b 都是非零向量. A.1 B.2 C.3 D.。
18、2.1向量的概念及表示基础过关1.下列说法正确的是()A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一存在的C.|D单位向量的方向相同或相反解析零向量方向任意,A错误;单位向量由于方向不同,故有无数个,B、D错误,故只有C正确.答案C2.设b是a的相反向量,则下列说法中错误的是()A.ab B.a与b的长度相等C.a是b的相反向量 D.a与b一定不相等解析对于A,若两向量均为非零向量,则它们的模相等,方向相反,两向量共线;若两向量均为零向量,根据零向量的方向是任意的,两向量也可以理解为共线,故A正确;对于B,根据相反向量的概念,a与b的。
19、2.1向量的线性运算2.1.1向量的概念一、选择题1.下列物理量:质量;速度;位移;力;加速度;路程.其中是向量的有()A.2个 B.3个 C.4个 D.5个答案C解析是向量.2.下列说法中正确的个数是()任一向量与它的相反向量都不相等;若一个向量方向不确定,则其模为0;共线的向量,若起点不同,则终点一定不同;单位向量的模都相等.A.0 B.1 C.2 D.3答案C3.下列说法正确的是()A.若ab,则a与b的方向相同或相反B.若ab,bc,则acC.若两个单位向量平行,则这两个单位向量相等D.若ab,bc,则ac答案D4.如图,在四边形ABCD中,若,则图中相等的向量是()A.与 B.。
20、21向量的线性运算21.1向量的概念基础过关1有下列说法:若向量a与向量b不平行,则a与b方向一定不相同;若向量,满足|,且与同向,则;ab的充要条件是|a|b|且ab.其中,正确说法的个数是()A1B2C3D4答案A解析对于,由共线向量的定义知,两向量不平行,方向一定不相同,故正确;对于,因为向量不能比较大小,故错误;对于,由ab能推出|a|b|且ab,反过来,则不成立,故错误2给出下列五个命题:两个向量相等,则它们的起点相同,终点相同;若|a|b|,则ab;若,则四边形ABCD是正方形;平行四边形ABCD中,一定有;若mn,nk,则mk.其中不正确的命题。