2.1 向量的加法 学案含答案

6.26.2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 1.如图,在正六边形 ABCDEF 中,BACDEF等于 A0 B.BE C.AD D.CF 答案 D 解析 BACDEFDECDEFCEE,2复数的四则运算 2.1复数的加法与减法 一、选择题 1实

2.1 向量的加法 学案含答案Tag内容描述:

1、6.26.2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 1.如图,在正六边形 ABCDEF 中,BACDEF等于 A0 B.BE C.AD D.CF 答案 D 解析 BACDEFDECDEFCEE。

2、2复数的四则运算2.1复数的加法与减法一、选择题1实数x,y满足z1yxi,z2yix,且z1z22,则xy的值是()A1 B2C2 D12已知复数z1(a22)3ai,z2a(a22)i,若z1z2是纯虚数,那么实数a的值为()A1 B2C2 D2或13设复数z满足关系式z|z|2i,那么z等于()Ai B.iCi D.i4设f(z)|z|,z134i,z22i,则f(z1z2)等于()A. B5C. D55在复平面内点A,B,C所对应的复数分别为13i,i,2i,若,则点D表示的复数是()A13i B3iC35i D53i6已知复数z对应的向量如图所示,则复数z1所对应的向量正确的是()7复数z11icos ,z2sin i,则|z1z2|的最大值为()A3。

3、2复数的四则运算21复数的加法与减法一、选择题1实数x,y满足z1yxi,z2yix,且z1z22,则xy的值是()A1 B2 C2 D12已知复数z1(a22)3ai,z2a(a22)i,若z1z2是纯虚数,那么实数a的值为()A1 B2C2 D2或13设复数z满足关系式z|z|2i,那么z等于()Ai B.iCi D.i4复数满足(a3i)(2i)5bi,则ab等于()A4 B7 C8 D55设f(z)|z|,z134i,z22i,则f(z1z2)等于()A. B5 C. D56在复平面内点A,B,C所对应的复数分别为13i,i,2i,若,则点D表示的复数是()A13i B3iC35i D53i7已知复数z对应的向量如图所示,则复数z1所对应的向量正确的是()二。

4、6 6. .2 2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 基础达标 一选择题 1.下列等式错误的是 A.a00aa B.ABBCAC0 C.ABBA0 D.CAACMNNPPM 解析 ABBC。

5、42向量的加法(一)基础过关1设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B2C3D4答案D解析因为点M为平行四边形ABCD对角线的交点,所以点M是AC和BD的中点,由平行四边形法则知2,2,故4.2.如图在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3在四边形ABCD中,则()A四边形ABCD一定是矩形B四边形ABCD一定是菱形C四边形ABCD一定是正方形D四边形ABCD一定是平行四边形答案D4ABC的三边长为3,4,5,则等于()A0B12C2D9答案A5若|4,|3,|5,则ABC_.答案906已知|1,且AOB60,则|_.答案解析如图所。

6、2.1.2向量的加法一、选择题1.作用在同一物体上的两个力F160 N,F260 N,当它们的夹角为120时,则这两个力的合力大小为()A.30 N B.60 N C.90 N D.120 N答案B2.如图,在平行四边形ABCD中,O是对角线的交点,下列结论正确的是()A., B.C. D.答案C3.下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A.0 B.1 C.2 D.3答案B解析错,若ab0,则ab的方向是任意的;正确;错,当A,B,C三点共线时,也满足0;。

7、2.2向量的线性运算22.1向量的加法一、选择题1化简等于()A. B. C. D.考点向量加法运算及运算律题点化简向量答案D2.如图,四边形ABCD是梯形,ADBC,对角线AC与BD相交于点O,则等于()A. B. C. D.考点向量加法运算及运算律题点几何图形中的向量加法运算答案B解析.3下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A0 B1 C2 D3考点向量加法运算及运算律题点几何图形中的向量加法运算答案B解析错,若ab0。

8、6.2.1 向量的加法运算向量的加法运算 一选择题 1.已知 a,b,c 是非零向量,则acb,bac,bca,cab,cba中,与向量abc 相等的个数为 A.5 B.4 C.3 D.2 2.若向量 a 表示向东航行 1 km,向量 b 。

9、2.1.2向量的加法基础过关1下列三个命题:若ab0,bc0,则ac;的等价条件是点A与点C重合,点B与点D重合;若ab0且b0,则a0.其中正确命题的个数是()A1 B2 C3 D0答案B解析中,ab0,a、b的长度相等且方向相反又bc0,b、c的长度相等且方向相反,a、c的长度相等且方向相同,故ac,正确中,当时,应有|及由A到B与由C到D的方向相同,但不一定要有点A与点C重合,点B与点D重合,故错显然正确2如图,在ABCD中,O是对角线的交点,下列结论正确的是()A.,B.C.D.答案C3a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa。

10、2.2向量的线性运算2.2.1向量的加法基础过关1.已知下列各式:;();.其中结果为0的有()A.1个 B.2个 C.3个 D.4个解析0;()()()0;0;()()0.故结果为0的是.答案B2.如图所示,在平行四边形ABCD中,有以下四个等式:;0.其中正确的式子有()A.4个 B.3个 C.2个 D.1个解析由平行四边形法则知正确;错误,;错误,;正确,则0.答案C3.已知向量a表示“向东航行1 km”,向量b表示“向南航行1 km”,则向量ab表示_ km.解析由平行四边形法则可得ab表示向东南航行 km.答案向东南航行4.如图所示,在正六边形ABCDEF中,若AB1,则|_.解析|。

11、 2.1 平面向量的实际背景及基本概念平面向量的实际背景及基本概念 学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形 中这些相关的概念 知识点一 向量的概念 1向量:既有大小,又有方向的量叫做。

12、 2.2 平面向量的线性运算平面向量的线性运算 22.1 向量加法运算及其几何意义向量加法运算及其几何意义 学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向 量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运 算.3.了解向量加法的交换律和结合律, 并能依据几何意义作图解释向量加法运算律的合理性 知识点一 向量加法的定义及其运算法。

13、 1 从平面向量到空间向量从平面向量到空间向量 学习目标 1.理解空间向量的概念.2.了解空间向量的表示法,了解自由向量的概念.3.理解空 间向量的夹角.4.理解直线的方向向量与平面的法向量的概念. 知识点一 空间向量的概念 1.定义:在空间中,把既有大小又有方向的量,叫作空间向量. 2.长度:空间向量的大小叫作向量的长度或模. 3.表示法 (1)几何表示法:空间向量用有向线段表示. (2)字母表示法:用字母表示,若向量 a 的起点是 A,终点是 B,则向量 a 也可以记作AB ,其 模记为|AB |或|a|. 4.自由向量:数学中所讨论的向量与向量的起点无关。

14、2.1向量的概念及表示学习目标1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念知识点一向量的概念1向量:既有大小,又有方向的量称为向量2数量:只有大小,没有方向的量称为数量知识点二向量的表示方法1向量的几何表示:向量可以用一条有向线段表示带有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所。

15、2复数的四则运算21复数的加法与减法学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念知识点复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(abi)(cdi)(ac)(bd)i.梳理(1)运算法则设z1abi,z2cdi是任意两个复数,那么(abi)(cdi)(ac)(bd)i,(abi)(cdi)(ac)(bd)i.(2)加法运算律对任意z1,z2,z3C,有z1z2z2z1,(z1z2)z3z1(z2z3)1在进行复数的加法时,实部与实部相。

16、42向量的加法(一)学习目标1.理解并掌握加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依几何意义作图解释加法运算律的合理性知识链接1两个向量相加就是两个向量的模相加吗?答不是两个向量的和仍是一个向量,所以两个向量相加要注意两个方面,即和向量的方向和模2向量加法的平行四边形法则和三角形法则有何区别与联系?答向量加法的平行四边形法则和三角形法则的区别:三角形法则中强调“首尾相连”,。

17、2.2向量的线性运算22.1向量的加法学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性知识点一向量加法的定义及其运算法则1向量加法的定义求两个向量和的运算,叫做向量的加法2向量求和的法则向量求和的法则三角形法则已知向量a,b,在平面上任取一点O,作a,b,则向量叫做a与b的和,记作ab,即ab.这种求向量和的方法,称为向量加法的。

18、2从位移的合成到向量的加法2.1向量的加法一、选择题1化简等于()A. B. C. D.考点向量加法运算及运算律题点化简向量答案D2如图,在平行四边形ABCD中,O是对角线的交点,下列结论正确的是()A., B.C. D.答案C3作用在同一物体上的两个力F160 N,F260 N,当它们的夹角为120时,则这两个力的合力大小为()A30 N B60 N C90 N D120 N答案B4下列说法正确的个数为()如果非零向量a与b的方向相同或相反,那么ab的方向必与a或b的方向相同;在ABC中,必有0;若0,则A,B,C一定为一个三角形的三个顶点;若a,b均为非零向量,则|ab|a|b|.A0 B1 C2 D3考点向。

19、2从位移的合成到向量的加法21向量的加法基础过关1已知向量ab,且|a|b|0,则向量ab的方向()A与向量a方向相同B与向量a方向相反C与向量b方向相同D不确定解析如果a和b方向相同,则它们的和的方向应该与a(或b)的方向相同;如果它们的方向相反,而a的模大于b的模,则它们的和的方向与a的方向相同答案A2下列等式错误的是()Aa00aaB.0C.0D.解析20,故B错答案B3若a,b为非零向量,且|ab|a|b|,则()Aab,且a与b方向相同Ba,b是共线向量且方向相反CabDa,b无论什么关系均可答案A4已知a,b,c,d.根据图示填空,(1)abc_;(2)bdc_.解析(1)abc.(2)bdc.答。

20、2从位移的合成到向量的加法2.1向量的加法学习目标1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能依据几何意义作图解释向量加法运算律的合理性知识点一向量加法的定义及其运算法则1向量加法的定义求两个向量和的运算,叫作向量的加法2向量加法的法则三角形法则已知向量a,b,在平面上任取一点A,作a,b,再作向量,则向量叫作向量a与b的和,记作ab,即ab平行四边形法则已知向量a,b,。

【2.1 向量的加法 学案含答案】相关DOC文档
6.2.1向量的加法运算 课后作业(含答案)
6.2.1向量的加法运算 同步练习(含答案)
《2.1.2 向量的加法》同步练习(含答案)
《2.2.1 向量的加法》同步练习(含答案)
2.1 向量的概念及表示 学案(含答案)
2.1 复数的加法与减法 学案(含答案)
4.2 向量的加法(一) 学案(含答案)
2.2.1 向量的加法 学案(含答案)
2.1 向量的加法 课时对点练含答案
2.1 向量的加法 课时作业含答案
2.1 向量的加法 学案(含答案)
标签 > 2.1 向量的加法 学案含答案[编号:131754]