2.1 复数的加法与减法 学案(含答案)

上传人:可** 文档编号:116759 上传时间:2020-01-10 格式:DOCX 页数:6 大小:160.54KB
下载 相关 举报
2.1 复数的加法与减法 学案(含答案)_第1页
第1页 / 共6页
2.1 复数的加法与减法 学案(含答案)_第2页
第2页 / 共6页
2.1 复数的加法与减法 学案(含答案)_第3页
第3页 / 共6页
2.1 复数的加法与减法 学案(含答案)_第4页
第4页 / 共6页
2.1 复数的加法与减法 学案(含答案)_第5页
第5页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2复数的四则运算21复数的加法与减法学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念知识点复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(abi)(cdi)(ac)(bd)i.梳理(1)运算法则设z1abi,z2cdi是任意两个复数,那么(abi)(cdi)(ac)(bd)i,(abi)(cdi)(ac)(bd)i.(2)加法运算律对任意z1,z2,z3C,有z1z2z2z1,(z1z2)z3z1(z2z3)1在进行复数

2、的加法时,实部与实部相加得实部,虚部与虚部相加得虚部()2复数的加、减法满足交换律和结合律()类型一复数的加法、减法运算例1(1)若z12i,z23ai(aR),复数z1z2所对应的点在实轴上,则a_.(2)已知复数z满足|z|iz13i,则z_.考点复数的加减法运算法则题点复数加减法的综合应用答案(1)1(2)1i解析(1)z1z2(2i)(3ai)5(a1)i,由题意得a10,则a1.(2)设zxyi(x,yR),则|z|,|z|izixyix(y)i13i,解得z1i.反思与感悟(1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减(2)当一个等式中同时含有|z|与z时,一般用待定系

3、数法,设zxyi(x,yR)跟踪训练1(1)若复数z满足zi33i,则z_.(2)(abi)(2a3bi)3i_(a,bR)(3)已知复数z满足|z|z1i,则z_.考点复数的加减法运算法则题点复数加减法的综合应用答案(1)62i(2)a(4b3)i(3)i解析(1)zi33i,z62i.(2)(abi)(2a3bi)3i(a2a)(b3b3)ia(4b3)i.(3)设zxyi(x,yR),|z|,|z|z(x)yi1i,解得zi.类型二复数加、减法的应用例2(1)如图所示,平行四边形OABC的顶点O,A,C对应的复数分别为0,32i,24i.求:表示的复数;表示的复数;表示的复数解因为A,C

4、对应的复数分别为32i,24i,由复数的几何意义知,与表示的复数分别为32i,24i.因为,所以表示的复数为32i.因为,所以表示的复数为(32i)(24i)52i.,所以表示的复数为(32i)(24i)16i.(2)已知z1,z2C,|z1|z2|1,|z1z2|,求|z1z2|.解根据复数加减法的几何意义,由|z1|z2|知,以,为邻边的平行四边形OACB是菱形如图,对应的复数为z1,对应的复数为z2,|,对应的复数为z1z2,|.在AOC中,|1,|,AOC30.同理得BOC30,OAB为等边三角形,则|1,对应的复数为z1z2,|z1z2|1.引申探究若将本例(2)中的条件“|z1z2

5、|”改为“|z1z2|1”,求|z1z2|.解如例2(2)解析中的图,向量表示的复数为z1z2,|1,则AOB为等边三角形,AOC30.取AB与OC的交点为D,则|,|,而表示的复数为z1z2,|z1z2|.反思与感悟(1)技巧:形转化为数:利用几何意义可以把几何图形的变换转化成复数运算去处理;数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之中(2)常见结论:在复平面内,z1,z2对应的点分别为A,B,z1z2对应的点为C,O为坐标原点,则四边形:OACB为平行四边形;若|z1z2|z1z2|,则四边形OACB为矩形;若|z1|z2|,则四边形OACB为菱形;若|z1

6、|z2|且|z1z2|z1z2|,则四边形OACB为正方形跟踪训练2(1)已知复平面内的平面向量,表示的复数分别是2i,32i,则|_.(2)若z12i,z23ai,复数z2z1所对应的点在第四象限上,则实数a的取值范围是_答案(1)(2)(,1)解析(1),表示的复数为(2i)(32i)13i,|.(2)z2z11(a1)i,由题意知a10,即a1.1已知复数z1i和复数z2cos 60isin 60,则z1z2等于()A1 B1C.i D.i答案A解析z2i,z1z21.2设z134i,z223i,则z1z2在复平面内对应的点位于()A第一象限 B第二象限C第三象限 D第四象限答案D解析z

7、1z257i,z1z2在复平面内对应的点位于第四象限3在复平面内,O是原点,表示的复数分别为2i,32i,15i,则表示的复数为()A28i B66iC44i D42i答案C解析()44i.4已知复数z1(a22)(a4)i,z2a(a22)i(aR),且z1z2为纯虚数,则a_.答案1解析 z1z2(a2a2)(a4a22)i(aR)为纯虚数,解得a1.5设平行四边形ABCD在复平面内,A为原点,B,D两点对应的复数分别是32i和24i,则点C对应的复数是_答案52i解析设AC与BD的交点为E,则E点坐标为,设点C坐标为(x,y),则x5,y2,故点C对应的复数为52i.1复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算2复数加法的几何意义就是向量加法的平行四边形法则,复数减法的几何意义就是向量减法的三角形法则

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 北师大版 > 选修1-2