中考数学一次函数

第 10 讲 一次函数A 组 基础题组一、选择题1.已知 k0,b0,b0 B.k0C.k0,bx2时,满足 y1kx+4 的解集是 ( )A.x-2 B.x0 C.x1 D.x0,则 b 的取值范围是 . 9.如图,OPQ 是边长为 2 的等边三角形,若正比例函数的图象过点 P,则该正比例函数的解

中考数学一次函数Tag内容描述:

1、第 10 讲 一次函数A 组 基础题组一、选择题1.已知 k0,b0,b0 B.k0C.k0,bx2时,满足 y1kx+4 的解集是 ( )A.x-2 B.x0 C.x1 D.x0,则 b 的取值范围是 . 9.如图,OPQ 是边长为 2 的等边三角形,若正比例函数的图象过点 P,则该正比例函数的解析式是 . 10.(2018 潍坊)如图,点 A1的坐标为(2,0),过点 A1作 x 轴的垂线交直线 l:y= x 于点 B1,以原点 O 为圆心,OB 1的长为半径画弧交 x 轴3正半轴于点 A2;再过点 A2作 x 轴的垂线交直线 l 于点 B2,以原点 O 为圆心,以 OB2的长为半径画弧交 x 轴正半轴于点 A3;.按此作法进行下去,则 的长是 . 2 0192 018三、。

2、第一部分第三章第2讲1(2018深圳)把直线yx向上平移3个单位长度,下列在该平移后的直线上的点是(D)A(2,2)B(2,3) C(2,4)D(2,5)2(2016广州)若一次函数yaxb的图象经过第一、二、四象限,则下列不等式中总是成立的是(C)Ab0Bab0Ca2b0Dab03(2019邵阳)一次函数y1k1xb1的图象l1如图所示,将直线l1向下平移若干个单位长度后得直线l2,l2的函数表达式为y2k2xb2.下列说法中错误的是(B) Ak1k2Bb1b2Cb1b2D当x5时,y1y24(2018常德)若一次函数y(k2)x1的函数值随x的增大而增大,则(B)Ak2Bk2Ck0Dk05(2017大庆)对于函数y2x1,下列说法正确的是(D)A它的图象过点。

3、第 13 课时 一次函数的图象与性质 教学目标:教学目标:通过复习,查缺补漏,提升学生数学抽象水平,巩固数形结合思想,提高综合应试水平. 复习重点:复习重点:一次函数的图象 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: x轴交点坐标为 3 0 2 , ; 与轴交点坐标为y(03), 例 1.直线与32 xy ; 图象经过第 一、 三、 四 象 限。

4、 1 考点 09 一次函数 一、一、正比例函数的概念正比例函数的概念 一般地,形如 y=kx(k 是常数,k0)的函数,叫做正比例函数,其中 k 叫做正比例系数 二、一次函数二、一次函数 1.一次函数的定义一次函数的定义 一般地,形如 y=kx+b(k,b 为常数,且 k0)的函数叫做 x 的一次函数. 特别地,当一次函数 y=kx+b 中的 b=0 时,y=kx(k 是常数,k0)这时, y 。

5、2021 中考数学一轮专题训练:一次函数及其图象性质中考数学一轮专题训练:一次函数及其图象性质 一、选择题(本大题共一、选择题(本大题共 10 道小题)道小题) 1. (2019陕西)若正比例函数2yx 的图象经过点 O(a1,4),则 a 的值为 A1 B0 C1 D2 2. 一次函数 y2x3 的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限。

6、一次函数及其应用一次函数及其应用 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、一次函数的概念:一、一次函数的概念: 1.1.一次函数的概念:一次函数的概念: (1)定义:一般地,如果 y=kx+b(k,b 是常数,k0),那么 y 叫做 x 的一次函数; (2)结构特征: k0; x 的次数是 1; 常数项 b 可以是任意实数。 (3)图像:是不经过原点不经过原点的一条直线。 2.2.。

7、2020中考数学 专题复习:一次函数(含答案)1.正比例函数y=kx,当k 时,y随x的增大而增大2.正比例函数,当x=8时,y= 3. 若正比例函数的图像经过二、四象限,则k= 4.下列函数中既是一次函数又是正比例函数的是( )A . B. C. D. 5.画出一次函数的图象,并回答:当函数值为正时,的取值范围是 6.一次函数的图象不经过( )A第一象限 B第二象限 C第三象限 D第四象限7.P1(x1,y1),P2(x2,y2)是正比例函数y= -x图象上的两点,则下列判断正确的是Ay1y2 By1y2D当x1x2时,y1y28.写出一个图像位于第一、二、三象限内的一次函数表达式: 9已知一次函。

8、2020 年浙江省杭州市中考数学一模二模试题分类年浙江省杭州市中考数学一模二模试题分类 (3) 函数、 一次函数、函数、 一次函数、 反比例函数反比例函数 一选择题(共一选择题(共 11 小题)小题) 1 (2020西湖区校级模拟)如图,平面直角坐标系中有 P、Q 两点,其坐标分别为 P(4,a) 、Q(b,6) 根 据图中 P、Q 两点的位置,判断点(92b,a6)落在第( )象限 A一 。

9、第10讲 一次函数,一次函数和正比例函数的概念,kx+b,b=0,y=kx,一次函数y=kx+b(k0)的图象和性质(常考点),k,1.一次函数与正比例函数的图象,向上,向下,2.一次函数与正比例函数的性质,一、 二、三,一、三,一、 三、四,一、二、四,二、四,二、三、四,增大,减小,待定系数法求一次函数表达式,用待定系数法求一次函数表达式的一般步骤 (1)设出含有待定系数的函数表达式. (2)把两个已知条件(自变量与函数的对应值)代入表达式,得到关于系数k,b的 . (3)解 ,求出待定系数k,b. (4)将求得的待定系数的值代入 .,二元一次方程组,二元一次方程组,y=kx+b,一次。

10、过关练测15一次函数的应用(时间:45分钟)基础过关1甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠,优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系(1)甲、乙两采摘园优惠前的草莓销售价格是每千克_元;(2)求y1,y2关于x的函数表达。

11、 第14讲 一次函数1. 下列四个点中,在正比例函数yx的图象上的点是(D)A. B. C. D.2. 一次函数y2x4的图象与y轴的交点坐标是(A)A(0,4) B(4,0) C(2,0) D(0,2)3. 已知两个变量x和y,它们之间的3组对应值如下表所示.x101y113则y与x之间的函数关系式可能是(B)Ayx By2x1Cyx2x1 Dy4. 点(m,n)在函数y2x1的图象上,则2mn的值是(D)A2B2C1D15. 将直线y2x向右平移1个单位长度后所得图象对应的函数解析式为(B)Ay2x1 By2x2Cy2x1 Dy2x26. 在一次函数y2x3中,y随x的增大而增大(选填“增大”或“减小”);当0x5时,y的最。

12、第10讲 一次函数,总纲目录,泰安考情分析,基础知识过关,知识点一 一次函数的定义 1.一次函数的定义:一般地,形如 y=kx+b(k、b是常数,k0) 的函数叫做一次函数.特别地,当b=0时,一次函数y=kx+b变为y=kx (k为常数,k0),这时y叫做x的 正比例函数 . 2.一次函数的结构特征:(1)k0;(2)自变量x的次数是1;(3)常数b可以取任意实数. 温馨提示 正比例函数是一次函数,但一次函数y =kx +b (k、b是常数,k0)不一定是正比例函数,只有当b=0时,它才是正比例函数.,知识点二 一次函数的图象和性质 1.正比例函数y=kx(k是常数,k0)的图象是一条过点 (0,0)和点(1,k)的直。

13、课题11 一次函数的应用,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 利用一次函数解决代数型的实际问题 利用一次函数解决代数型的实际问题,首先应根据实际问题建立 一次 函数模型,从而把实际问题转化为一次函数问题,然后通过对一次函数的求 解,使实际问题得到解决.,基础知识梳理,考点二 利用一次函数解决图象型实际问题(只有一个一次函数图象) 在图象型的实际问题中,要注意从 函数图象 中获取正确的信息,并与已 知条件相结合,从而把实际问题转化为一次函数问题,然后通过对一次函数的 求解,使实际问题得到解决.,考点三 利。

14、第 1 页 共 10 页2019 年 中考数学一轮复习 一次函数一、选择题1.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量 y(升)与时间 x(分)之间的函数关系对应的图象大致为( )2.函 数 y= 中 , 自 变 量 x 的 取 值 范 围 是 ( )A.x 1 B.x 1 C.x 1 且 x 2 D.x 23.若一次函数 y=(m1)x+m 21 的图象通过原点,则 m 的值为( )A.m=1 B.m=1 C.m=1 D.m14.关于函数 y=-2x+1,下列结论正确的是 ( )A.图象必经过点(2,1) B.图象经过第一、二、三象限C.图象与直线 y=-2x+3 平行 D.y 随 x 。

15、2021 年中考数学一轮复习年中考数学一轮复习一次函数优生辅导训练一次函数优生辅导训练 1设一次函数 ykx+b(k0)的图象经过点(1,3) ,且 y 的值随 x 的值增大而增大,则该一次函数的 图象一定不经过( ) A第一象限 B第二象限 C第三象限 D第四象限 2下列函数中,函数值 y 随自变量 x 的值增大而增大的是( ) Ay By Cy Dy 3若一次函数 ykx+b(k0)的图象经过。

16、第三章 函 数,第10讲 一次函数,01,02,03,04,目录导航,课 前 预 习,C,C,x2,D,1.5,考 点 梳 理,课 堂 精 讲,D,C,C,x2,B,x1,往年 中 考,C,一,C,x2,y60.3x,。

17、第三章 函数,第一部分 基础过关,第2讲 一次函数,3,考情通览,4,5,1一次函数的概念 (1)一次函数:形如ykxb(k0)的函数叫做一次函数 (2)正比例函数:当b0时,即ykx(k0)称为正比例函数,知识梳理,要点回顾,6,1.(1)已知一次函数y(k1)x|k|3,则k_. (2)若一次函数y(m3)xm29是正比例函数,则m的值为_.,1,即时演练,3,7,2一次函数的图象与性质 一次函数ykxb(k0)的图象、性质列表如下:,要点回顾,8,9,2.(1)若函数ykx3的图象经过点(3,6),则k_. (2)(2019河池)函数yx2的图象不经过( ) A第一象限 B第二象限 C第三象限 D第四象限 (3)关于函数y2x1,下列结。

18、第 14 课时 一次函数的应用 教学目标:教学目标:通过复习,查缺补漏,发展学生数学建模、数学抽象的学科素养,提高综合应试水平. 复习重点:复习重点:一次函数图象与实际问题的联系 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例 1.一个有进水管与出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8m内既进水又出 水,每分的进水量和出水。

19、1,第14讲 一次函数,一、正比例函数和一次函数及其性质,二、一次函数ykxb的图象的画法 根据几何知识:两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可一般情况下:正比例函数ykx(k是常数,k0)的图象选取(_,_)、(_,_)来画;一次函数ykxb(k,b是常数,k0),选取它与两坐 标轴的交点: 、(0,b)(即横坐标或纵坐标 为0的点)来画,0,0,1,k,三、直线yk1xb1(k10)与yk2xb2(k20)的位置关系 1两直线平行k1k2且b1b2. 2两直线相交k1k2. 3两直线重合k1k2且b1b2. 4两直线垂直k1k21.,四、用待定系数法确定一次函数解析式的一。

【中考数学一次函数】相关PPT文档
【中考数学一次函数】相关DOC文档
【中考数学一次函数】相关PDF文档
【中考数学一次函数】相关其他文档
标签 > 中考数学一次函数[编号:163185]