【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短” 结合“ 垂线段最短”【方法揭秘】两条动线段的和的最小值问题,常见的是典型 的“牛喝水”问题,关键是
中考几何压轴题Tag内容描述:
1、【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短” 结合“ 垂线段最短”【方法揭秘】两条动线段的和的最小值问题,常见的是典型 的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大 值问题,一般根据三角形的两。
2、几何综合-填空选择压轴题41、如图,在菱形ABCD中,AB=2,B是锐角,AEBC于点E,M是AB的中点,连结MD,ME若EMD=90,则cosB的值为 2、如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cm B6cm C2.5cm D5cm3、定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转角度,这样的图形运动叫作图形的(a,)变换如图,等边ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上A1B1C1就是ABC经(1,180)变换后所得的图形若ABC经(1,180)变换后得A1B1C1,A。
3、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题九专题九 动态动态 几何定值问题几何定值问题 类型一 【线段及线段的和差为定值】 【典例指引1】 已知: ABC是等腰直角三角形, BAC90 , 将 ABC绕点C顺时针方向旋转得到 ABC, 记旋转角为 ,当 90 180 时,作 ADAC,垂足为 D,AD 与 BC 交于点 E (1)如图 1,当CAD15 时,作AEC 的平分线 EF 交 BC 于点 F 写出旋转角 的度数; 求证:EA+ECEF; (2)如图 2,在(1)的条件下,设 P 是直线 AD 上的一个动点,连接 PA,PF,若 AB 2,求线段 PA+PF 的最小值。
4、 深圳中考专项复习第 13 讲之几何填空压轴题 【考点介绍】 在深圳中考卷中第 15 或 16 题位置,每年都会出现一道纯几何填空题,难度中等或偏上,对初中几何性质、定理、 数学典型模型的综合(特别是相似综合)考查. 【最近五年中考实题详解】 1.(2020 深圳)如图, 已知四边形 ABCD, AC 与 BD 相交于点 O, ABC=DAC=90, tanACB=1 2, BO OD =。
5、几何综合-填空选择压轴题21、矩形ABCD中,AB=6,BC=8点P在矩形ABCD的内部,点E在边BC上,满足PBEDBC,若APD是等腰三角形,则PE的长为 2、如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACD=BAE;AF:BE=2:3;S四边形AFOE:SCOD=2:3其中正确的结论有 (填写所有正确结论的序号)3、如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()ABCD4、如图,在菱形ABC。
6、几何综合-填空选择压轴题51、以正方形ABCD的边AD作等边ADE,则BEC的度数是 2、如图在ABC中,ACB=60,AC=1,D是边AB的中点,E是边BC上一点若DE平分ABC的周长,则DE的长是 3、已知CD是ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为 4、如图,将面积为322的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E若BE=2,则AP的长为5、如图,ABC是等边三角形,ABD是等腰直角三角形,BAD=90,AEBD于点E,连CD分别交AE,AB于点F,G,过点A作AHCD交BD于点H则下列结论:ADC=15;AF=AG;AH=DF;AFGCBG;AF=(31)EF其中正确结论的个数。
7、几何综合-填空选择压轴题11、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是()A43B54C65D762、在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=3x+23上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A3B2C3D23、如图,等腰ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则CDF周长的最小值为4、如图,在ABCD中,CD=2AD,BEAD于点E,F为DC的中点,连结EF、BF,下列结论:ABC=2ABF;EF=BF;S四边形DEBC=2SEFB;CFE=3D。
8、一方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点.究其原因,是因为学生缺乏相关素。
9、一方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间。
10、 1 专题专题 2:倍长中线法倍长中线法 【典例引领】【典例引领】 例题:(2014 黑龙江龙东地区)已知 ABC 中,M 为 BC 的中点,直线 m 绕点 A 旋转,过 B、M、C 分别 作 BDm 于 E,CFm 于 F。 (1)当直线 m 经过 B 点时,如图 1,易证 EM= CF。(不需证明) (2)当直线 m 不经过 B 点,旋转到如图 2、图 3 的位置时,线段 BD、ME、CF 之间有怎样的数量关系? 请直接写出你的猜想,并选择一种情况加以证明。 【强化训练】【强化训练】 1、 (2017 黑龙江龙东地区)已知:AOB 和 COD 均为等腰直角三角形,AOB=COD=90 ,连接 AD, BC,点 H。
11、【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短” 结合“ 垂线段最短”【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图 1) 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面” (如图 2) 两条线段差的最大值问题,一般根据三角形的两边。
12、【类型综述】本节内容每年中考都会选择一种变换作为压轴题的背景素材,可以对函数图象进行平移,可以对几何图形进行平移、旋转,考查学生的数学综合应用能力在选择、填空中也会涉及变换的概念和简单应用只要抓住全等变换的特点,找到变与不变的量就可以解决问题预计在 2018 年中考中仍会在压轴部分渗透变换,但是会有新情境的渗透【方法揭秘】1.平移的性质(1)平移前后,对应线段平行、对应角相等;(2)各对应点所连接的线段平行(或在同一直线上)或相等;(3)平移前后的图形全等,注意:平移不改变图形的形状和大小.平移的作图步骤:(1)根。
13、三轮复习:几何综合+函数综合一选择题1如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()ABCD2如图所示,点P(3a,a)是反比例函数y(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为()AyByCyDy3如图,ABC与DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A:1B:1C5:3D不确定4如图,已知:MON30,点A1、A2、A3在射线ON上,点B1、B2、B3在射线OM上,A1B1A2、A2B2A3、A3B3A4均为等边三角形,若OA11,则A6B6A7的边长为()A6B12C32D645如图,已知l1l2l3,相邻两。
14、 1 专题专题 7:旋转的应用旋转的应用 【典例引领】【典例引领】 例题:在ABC 和ADE 中,BA=BC,DA=DE,且ABC=ADE= ,点 E 在ABC 的内部,连接 EC, EB 和 BD,并且ACE+ABE=90 . (1)如图 1,当 =60 时,线段 BD 与 CE 的数量关系为 ,线段 EA,EB,EC 的数量关系 为 ; (2)如图 2 当 =90 时,请写出线段 EA,EB,EC 的数量关系,并说明理由; (3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC= ,请直接写出BDE 的面积. 【强化训练】【强化训练】 1请认真阅读下面的数学小探究系列,完成所提出的问题: 2 探究 1:如图 1,在等腰。
15、 1 专题专题 4:折叠问题折叠问题 【典例引领】【典例引领】 例:如图,四边形 ABCD 是正方形,点 E 在直线 BC 上,连接 AE将ABE 沿 AE 所在直线折叠,点 B 的 对应点是点 B,连接 AB并延长交直线 DC 于点 F (1)当点 F 与点 C 重合时如图(1),易证:DF+BE=AF(不需证明); (2)(2)当点 F 在 DC 的延长线上时如图(2),当点 F 在 CD 的延长线上时如图(3),线段 DF、BE、 AF 有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明 【强化训练】【强化训练】 1、数学活动:在综合与实践活动课上,老师让同学们以“三角形。
16、专题八几何压轴题类型一 线段数量关系探究命题角度利用“倍长中线”添加辅助线(2020原创)如图1,在ABC和ADE中,ABAC,ADAE,BACDAE90.连接BE,DC,点P是CD的中点,连接AP.(1)求证:BE2AP;(2)如图2,若CAE30,AB6,AD4,求AP的长图1 图2【分析】(1)要证BE2AP,由点P是CD的中点,可知,延长AP到G,使得APPG,则APDGPC,从而只需证明AGBE即可;(2)由(1)可知,只需过点E作AC,AB的垂线,构造直角三角形求出BE的长即可【自主解答】1(2019安顺)(1)如图1,在四边形ABCD中,ABCD,点E是BC的中点,若AE是BAD的平分线,试判断AB,AD,DC之间的等量。
17、2019年全国中考数学真题分类汇编:代数几何综合压轴题一、选择题1. (2019年四川省达州市)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PDPC,交x轴于点D下列结论:OABC2;当点D运动到OA的中点处时,PC2+PD27;在运动过程中,CDP是一个定值;当ODP为等腰三角形时,点D的坐标为(,0)其中正确结论的个数是()A1个B2个C3个D4个【考点】矩形的性质、锐角三角函数、相似三角形的判定和性质、勾股定理、等腰三角形的性质【解答】解:四边形OABC。
18、2018 年全国各地中考数学压轴题汇编(广西专版)几何综合参考答案与试题解析一选择题(共 8 小题)1(2018广西)如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A B C2 D2解:过 A 作 ADBC 于 D,ABC 是等边三角形,AB=AC=BC=2,BAC= ABC=ACB=60,ADBC,BD=CD=1, AD= BD= ,ABC 的面积为 = ,S 扇形 BAC= = ,莱洛三角形的面积 S=3 2 =22 ,故选:D2(2018桂林)如图,在正方形 ABCD 中,AB=3,点 M 在 CD 的边上,且 DM=1,AEM 与A。
19、2018 年全国各地中考数学压轴题汇编(贵州专版)几何综合参考答案与试题解析一选择题(共 6 小题)1(2018贵阳)如图,在菱形 ABCD 中,E 是 AC 的中点,EF CB,交 AB 于点 F,如果 EF=3,那么菱形 ABCD 的周长为( )A24 B 18 C12 D9解:E 是 AC 中点,EF BC,交 AB 于点 F,EF 是ABC 的中位线,EF= BC,BC=6,菱形 ABCD 的周长是 46=24故选:A2(2018遵义)如图,点 P 是矩形 ABCD 的对角线 AC 上一点,过点 P 作 EFBC,分别交 AB,CD 于 E、F,连接 PB、PD若 AE=2,PF=8则图中阴影部分的面积为( )A10 B12 C16 D18解:作 PMAD 于 M,。
20、2022年江苏省中考压轴考点必杀题:几何压轴12021江苏苏州一模如图1,在中,点P以每秒一个单位的速度沿着运动,始终与相切,切点为D,设点P运动的时间为t,的面积为yy与t之间的函数关系为二次函数,表示为图21当时,的半径长为;2在运动过。