一元二次方程根系关系

2.5一元二次方程的根与系数的关系第二章一元二次方程导入新课讲授新课当堂练习课堂小结1.掌握一元二次方程的根与系数的关系.(重点)2.会利用根与系数的关21.2.4一元二次方程的根与系数的关系1探索一元二次方程的根与系数的关系2会不解方程利用一元二次方程的根与系数解决问题一、情境导入一般地,对于关于

一元二次方程根系关系Tag内容描述:

1、第17章 一元二次方程 单元测试一填空题:(每小题2分,共22分)1方程的一次项系数是_,常数项是_;2若代数式的值为0,则的值为_; 3在实数范围内分解因式:_;4已知是方程的一个根,是它的另一个根,则_,_5方程的判别式_,所以方程_实数根;6已知分式的值为0,则的值为_; 7以2,3为根的一元二次方程是_;8当方程是一元二次方程时,的值为_;9若是方程的两根,则_;10已知,则_; 11已知,则_;二选择题(每小题3分,共30分)题号12345678910选项1方程化为一般式。

2、第17章 一元二次方程 单元练习一、填空题1.方程x(2x1)=5(x+3)的一般形式是_,其中一次项系数是_,二次项系数是_,常数项是_.2.关于x的方程(k+1)x2+3(k2)x+k242=0的一次项系数是3,则k=_.3.3x210=0的一次项系数是_.4.一元二次方程ax2+bx+c=0的两根为_.5.x2+10x+_=(x+_)26.x2x+_=(x+_)27.一个正方体的表面积是384 cm2,则这个正方体的棱长为_.8.m_时,关于x的方程m(x2+x)= x2(x+2)是一元二次方程?9.方程x28=0的解是_,3x236=0的解是_.10.关于x的方程(a+1)x+x5=0是一元二次方程,则a=_.11.一矩形的长比宽多4 cm,矩形面积是9。

3、第17章 一元二次方程 单元测试一、选择题(本大题共5个小题,每小题5分,共25分)1.下列方程中,关于的一元二次方程是( ).(A) (B) (C) (D) 4.若与互为倒数,则实数为( ).(A) (B) (C) (D) 3.如果是方程的两个根,那么的值为( ).(A) -1 (B) 2 (C) (D) 4. 若方程有两个相等实数根,则=( ).(A) (B) 0 (C) 2 (D) 5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有名同学,根据题意,列出方程为( ).(A) (B) (C) (D) 二、填空题(本大题共5个小题,每小题5分,共25分)6.方程的解是 .7.。

4、第17章 一元二次方程 单元测试(满分150分,考试时间100分钟)一、选择题(每题4分,共32分)1、若关于x的方程(1)x1是一元二次方程,则的值是( )A、0B、1C、 1D、12、下列方程: x2=0, -2=0, 2+3x=(1+2x)(2+x), 3-=0,-8x+ 1=0中,一元二次方程的个数是( )A、1个 B、2个 C、3个 D、4个3、把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A、5x2-4x-4=0 B、x2-5=0 C、5x2-2x+1=0 D、5x2-4x+6=04、方程x2=6x的根是( )A、x1=0,x2=-6 B、x1=0,x2=6 C、x=6 D、x=05、不解方程判断下列方程中无实数根的是( )A、-x2=2x-1 B、4x2+4x+=0。

5、第17章 一元二次方程 单元测试一、选择题:(每小题3分,共24分)1、下列方程中,是关于x的一元二次方程为 ( )A BC D2、方程的解是 ( )A B C D3、方程 x2的解的个数为 ( )A0 B1 C2 D1或24、已知是方程210的一个根,则代数 2 ( )A1 B0 C1 D25、用配方法解一元二次方程,则方程可化为 ( )A 。

6、 一、选择题一、选择题 3(2019泰州) 方程 2x2+6x10 的两根为 x1、x2,则 x1+x2等于( ) A.6 B.6 C.3 D.3 【答案】C 【解析】根据一元二次方程根与系数的关系,x1+x2 6 2 3,故选 C. 6 (2019烟台)当5bc 时,关于 x 的一元二次方程 2 30xbxc的根的情况为( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根 D无法确定 【答案】A 【解析】因为5bc ,所以5cb ,因为 2 22 4 34 3 (5)6240bcbbb ,所以 该一元二次方程有两个不相等的实数根 10 (2019威海)已知 a,b 是方程 x 2+x30 的两个实数根,则 a2b+2019 的值是( ) A,2023 B,20。

7、 一、选择题一、选择题 10 (2019衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区 2016 年底有贫困人 口 9 万人,通过社会各界的努力,2018 年底贫困人口减少至 1 万人.设 2016 年底至 2018 年底该地区贫困人口的 年平均下降率为 x,根据题意列方程得( ) A. 9(12x)1 B. 9(1x)21 C. 9(12x)1 D. 9(1x)21 【答案】【答案】B 【解析】【解析】此问题的基本关系式是:基数 (1提高率或下降率)目标数 8 (2019安徽)安徽)据国家统计局数据,2018 年全年国内生产总值为 90.3 万亿,比 2017 年增长 6.6%.。

8、 二、填空题二、填空题 13 (2019山西)山西)如图,在一块长 12m,宽 8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩 形的一条边平行),剩余部分栽种花草,且栽种花草的面积为 77m2,设道路的宽为 x m,则根据题意,可列方程为 _. 第 13 题图 【答案】【答案】(12x)(8x)77 【解析】【解析】栽种花草的部分可以看成一个矩形,长为(12x)m,宽为(8x)m,根据面积等量关系可列方程(12x)(8 x)77. 三、解答题三、解答题 25. (2019 南京)某地计划对矩形广场进行扩建改造如图,原广场长 50m,宽 40m,要求扩充后的矩形广 场长与宽的比为 。

9、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(1),一元二次方程有什么特点?,整式方程 未知数的个数是1 含有未知数的项的最高次数是2,含有一个未知数,并且所含未知数的项的次数都为2的方程。,什么是一元二次方程?,课前回顾,ax2+bx+c=0 (a,b,c为常数,a0),一元二次方程的一般形式:,a,b,c分别叫做二次项系数、一次项系数和常数项.,课前回顾,还记得下面这一问题吗?,我们列出的一元二次方程为,情境导入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设正方。

10、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(2),列方程解应用题的一般步骤:,即审题,找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系。,设元,包括设直接未知数或间接未知数,以及用含未知数的代数式表示其他相关量。,根据等量关系列出方程。,解方程。,检验根的准确性及是否符合实际意义。,总结,课前回顾,(1)增长率问题,(2)降低率问题,课前回顾,例1 如图甲,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成。

11、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(1),因式分解法 开平方法 配方法 公式法,解一元二次方程的四种方法:,课前回顾,例1 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?,情境导入,学了这么多方法,我们来试着将它们应用到生活中吧!,审题:理解题意。 设元(未知数)。 用含未知数的代数式表示相关的量。 。

12、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(2),(1)提取公因式法 (2)公式法: a2b2=(a+b) (ab) a22ab+b2=(ab)2 (3)十字相乘法,因式分解的主要方法:,课前回顾,x2+(a+b)x+ab=(x+a)(x+b).,根据若AB=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程。,将方程的左边分解因式;,若方程的右边不是0,先移项,使方程的右边为0;,因式分解法解方程的基本步骤:,课前回顾,情境引入,如图,师傅为了修房顶,把一架梯子搁在墙上,AB长5米,AC是BC的2倍,问:AC为多少?,梯子、墙壁、地面构。

13、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(3),配方法解二次项系数为1的一元二次方程的基本步骤:,(1)移项:把常数项移到方程的右边; (2)配方:方程两边同时加上一次项系数一半的平方; (3)开方:根据平方根的意义,方程两边开平方; (4)求解:解一元一次方程; (5)定解:写出原方程的解.,课前回顾,情境引入,你能用配方法解一元二次方程的一般式吗?,(1)移项;(2)配方;(3)开方;(4)求解;(5)定解.,步骤依旧如下:,移项,得,配方,得,即,探究1,解得,一元二次方程的求根公式,(a0, b2-4ac0),开。

14、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.1 一元二次方程,课前回顾,一元一次方程,未知量,未知量的最高次幂,一个未知量,未知量的最高次幂是1,提示,判断下列式子是否是一元一次方程:,情境引入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设未知数,设正方形的边长为x.,探究1,正方形的面积为_。,长方形的面积为_。,分析等量关系,探究1,相加,+,=,探究2,某放射性元素经过2天质量衰变为原来的 ,问:平均每天的衰减率为多少?,设未知数,设平均每天的衰减率为x。,探究2,一天衰减为_。

15、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.4 一元二次方程根与系数的关系,1.一元二次方程的一般形式是什么?,2.一元二次方程根的判别式是什么?,课前回顾,3.一元二次方程的求根公式是什么?,4.一元二次方程的根的情况怎样确定?,课前回顾,情境导入,如果一元二次方程 的两个根 分别是 , ,那么你可以发现什么结论?,猜想,相等,这种关系是这几个方程所特有的还是对于任意的一元二次方程都适合的呢?我们来证明一下,如果一元二次方程 的两个根分别是 , ,那么:,总结,能用这个结论的前提为0,证明:在,利用。

16、30.5二次函数与一元二次方程的关系知识点 1二次函数图像与x轴交点的横坐标1.(1)二次函数y=ax2+bx+c的图像如图30-5-1所示,则方程ax2+bx+c=0的根是,;(2)方程x2+3x+2=0的根是,抛物线y=x2+3x+2与x轴的交点坐标是和.图30-5-12.已知二次函数y=x2+bx+c的图像与x轴的两个交点坐标分别为(3,0)和(-1,0),则一元二次方程x2+bx+c=0的两个根是()A.x1=1,x2=3 B.x1=-3,x2=1C.x1=3,x2=-1 D.x1=-1,x2=-33.二次函数y=-x2+6x-9的图像与x轴交点的横坐标为.知识点 2二次函数图像与x轴的交点个数4.教材“做一做”变式题 抛物线y=-3x2-x+4与x轴的公共点的个数是()A。

17、,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两根的积与系数有什么关系?,苏科数学,二、数学活动,你能解释刚才的发现吗?,则,一元二次方程 ax2bxc0 (a0),如果b24ac0,它的两个根分别是x1、x2,活动1 用公式验证,苏科数学,二、数学活动,苏科数学,二、数学活动,苏科数学,如果一元二次方。

18、*21.2.4 一元二次方程的根与系数的关系1探索一元二次方程的根与系数的关系2会不解方程利用一元二次方程的根与系数解决问题一、情境导入一般地,对于关于 x 的方程 x2 px q0( p, q 为已知常数, p24 q0),试用求根公式求出它的两个解 x1、 x2,算一算 x1 x2、 x1x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知 m、 n 是方程 2x2 x20 的两实数根,则 的值为( )1m 1nA1 B. C D112 12解析:根据根与系数的关系,可以求出 m n 和 mn 的值,。

19、*2.5 一元二次方程的根与系数的关系,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.掌握一元二次方程的根与系数的关系.(重点) 2.会利用根与系数的关系解决有关的问题.(难点),学习目标,导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实数根.,算一算 解。

【一元二次方程根系关系】相关PPT文档
【一元二次方程根系关系】相关DOC文档
标签 > 一元二次方程根系关系[编号:17610]