杨辉三角系数集

1.3.2“杨辉三角”与二项式系数的性质第一章1.3二项式定理学习目标1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数.2.理解二项式系数的性质13.2“杨辉三角”与二项式系数的性质1.能运用函数观点分析处理二项式系数的性质2.理解和掌握二项式系数的性质,并会简单的应用1杨辉三

杨辉三角系数集Tag内容描述:

1、北师大九年级数学下册 1.1 锐角三角函数 同步训练学校:_ 班级:_ 姓名:_ 考号:_一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计 24 分 , ) 1. 如图, 的三个顶点都在方格纸的格点上,则 =( )A.12B.22C.33D.552. 若 为锐角,且 ,则 3 ()A.小于 30 B.大于 30C.大于 且小于45 60 D.大于 603. 若 ,则下列说法不正确的是( ) 010. 121311. 12. 3513. 609014. 15. 453516. 3417. 解: , ,=20=20由勾股定理,得,=2+2=401,=20401=20401401,= 401。

2、*2.5 一元二次方程的根与系数的关系,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.掌握一元二次方程的根与系数的关系.(重点) 2.会利用根与系数的关系解决有关的问题.(难点),学习目标,导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实数根.,算一算 解。

3、用待定系数法求二次函数解析式,第22章:二次函数,22.1 二次函数的图像和性质,人教版九年级上册,课时流程,学习目标:,用一般式(三点式)确定二次函数解析式 用顶点式确定二次函数解析式 用交点式确定二次函数解析式,导入新课,已知一次函数图象上两个点的坐标就可以用待定系数法求出一次函数的解析式,那么要求一个二次函数的解析式需要哪些条件,用什么方法求解呢?这就是我们本节课要学习的内容.,知识点,新课讲解,情景引入:问题1用一般式(三点式)确定二次函数的解析式,已知抛物线过三点,求其解析式,可采用一般式; 而用一般式求待定系。

4、,第21章:一元二次方程,人教版九年级上册,21.2 解一元二次方程,21.2.5 一元二次方程的根与系数的关系,1.一元二次方程的解法,2.求根公式,一、知识回顾,学习目标:1.理解并掌握根与系数关系:x1 + x2 = - , x1 x2 = 2.会用根的判别式及根与系数关系解题.,二、目标展示,问题:你发现这些一元二次方程的两根 x1+ x2,与x1 x2系数有什么规律?猜想:当二次项系数为1时,方程 x2+px+q=0的两根为x1, x2,2 1,3,2,-1 3,2,-3,1 4,5,4,三、导入新课,-2,x1+ x2,x1x2与系数有什么规律?,如果一元二次方程ax2+bx+c=0(a、b、c是常数且a0) 的两根为x1、x。

5、*21.2.4 一元二次方程的根与系数的关系1探索一元二次方程的根与系数的关系2会不解方程利用一元二次方程的根与系数解决问题一、情境导入一般地,对于关于 x 的方程 x2 px q0( p, q 为已知常数, p24 q0),试用求根公式求出它的两个解 x1、 x2,算一算 x1 x2、 x1x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知 m、 n 是方程 2x2 x20 的两实数根,则 的值为( )1m 1nA1 B. C D112 12解析:根据根与系数的关系,可以求出 m n 和 mn 的值,。

6、2.2 一次函数和二次函数 2.2.3 待定系数法,学习目标 1.了解待定系数法的概念,会用待定系数法求函数的解析式. 2.掌握待定系数法的特征及应用.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,预习导引 1.待定系数法:一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中 ,然后再根据题设条件求出这些 .这种通过求 来确定变量之间关系式的方法叫做待定系数法.,待定系数,系数待定,待定系数,yax2bxc(a0),ykx(k0),ykxb(k0),要点一 求一次函数的解析式 例1 。

7、,苏科数学,5.3 用待定系数法确定二次函数表达式,2还记得我们是怎样求一次函数和反比例函数的表达式吗?,1二次函数关系式有哪几种表达方式?,用待定系数法求解,一般式: yax2 bxc (a0),顶点式:y a(x h)2 k (a0),知识回顾,活动一:,例1 已知二次函数yax2 的图像经过点(2,8), 求a的值,由一般式yax2 bxc 确定二次函数的表达式,例2 已知二次函数yax2 c的图像经过点(2,8)和(1,5),求a、c的值,对比三个例题的区别和联系,总结用一般式确定二次函数表达式的方法,例3 已知二次函数yax2 bx c经过点 (3,6)、(2,1)和(0,3),求这个二次。

8、,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两根的积与系数有什么关系?,苏科数学,二、数学活动,你能解释刚才的发现吗?,则,一元二次方程 ax2bxc0 (a0),如果b24ac0,它的两个根分别是x1、x2,活动1 用公式验证,苏科数学,二、数学活动,苏科数学,二、数学活动,苏科数学,如果一元二次方。

9、*2.5 一元二次方程的根与系数的关系 一元二次方程的根与系数的关系 1掌握一元二次方程的根与系数的关系;(重点) 2会利用根与系数的关系解决有关的问题(难点) 一、情景导入 解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什 么联系? (1)x22x0; (2)x23x40; (3)x25x60. 方程 x1 x2 x1x2 x1 x2 二、合作探。

10、备战2020中考数学解题方法专题研究专题2 待定系数法专题【方法简介】待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。【真题演练】1. 若一个二次函数的二次项系数为1,且图象的顶点坐标为(0,3).则这个二次函数的表达式为_【答案】y=x23 【解析】【解答】抛物线二次项系数为-1,顶点坐标为(0,-3),抛物线的。

11、备战2020中考数学解题方法专题研究专题2 待定系数法专题【方法简介】待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。【真题演练】1. 若一个二次函数的二次项系数为1,且图象的顶点坐标为(0,3).则这个二次函数的表达式为_2.(2019年云南玉溪)若是完全平方式,则k的值是( ).A.9 B.-9 C.9 D.33. (2019贵州。

12、1.2相关系数1.3可线性化的回归分析一、选择题1若两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归方程为ybxa,那么()Abr0 Bbr0 Dar0时,x和y正相关,则r0;当b0.2关于两个变量x,y与其线性相关系数r,有下列说法:若r0,则x增大时,y也相应增大;若|r|越趋近于1,则x与y的线性相关程度越强;若r1或r1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上其中正确的有()A BC D考点线性相关系数题点线性相关系数的应用答案D解析根据相关系数的定义,变量之间的相关关。

13、1回归分析1.1回归分析1.2相关系数一、选择题1根据如下样本数据:x345678y4.02.50.50.52.03.0得到的回归方程为ybxa,则()Aa0,b0Ba0,b0Da0,b02某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:x(月份)12345y(万盒)55668若x,y线性相关,线性回归方程为y0.7xa,估计该制药厂6月份生产甲胶囊产量为()A8.0万盒 B8.1万盒C8.9万盒 D8.6万盒3通过相关系数来判断两个变量相关关系的强弱时,相关系数的绝对值越大,用线性回归模型拟合样本数据的效果就越好,如果相关系数r0.75,1,则两个变量()A负。

14、1.2相关系数1.3可线性化的回归分析学习目标1.了解线性相关系数r的求解公式,并会初步应用.2.理解回归分析的基本思想.3.通过可线性化的回归分析,判断几种不同模型的拟合程度知识点一相关系数1相关系数r的计算假设两个随机变量的数据分别为(x1,y1),(x2,y2),(xn,yn),则变量间线性相关系数r.2相关系数r的性质(1)r的取值范围为1,1(2)|r|值越大,误差Q越小,变量之间的线性相关程度越高(3)|r|值越接近0,误差Q越大,变量之间的线性相关程度越低3相关性的分类(1)当r0时,两个变量正相关(2)当r0时,两个变量负相关(3)当r0时,两个变量线性。

15、第2课时简单的三角恒等变换题型一三角函数式的化简1化简:_.答案2cos解析原式2cos .2化简:_.答案cos2x解析原式cos2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1(1)2sin50sin10(1tan10)_.答案解析原式sin80cos102sin 50cos 10sin 10cos(6010)2sin(50。

16、第2课时简单的三角恒等变换题型一三角函数式的化简1化简: .答案2cos 解析原式2cos .2化简: .答案cos 2x解析原式cos 2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1 (1)(2018阜新质检)2sin 50sin 10(1tan 10) .答案解析原式sin 80cos 102sin 50cos 10sin 10cos(60&#。

17、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。

18、13.2 “杨辉三角”与二项式系数的性质1.能运用函数观点分析处理二项式系数的性质 2.理解和掌握二项式系数的性质,并会简单的应用1杨辉三角的特点(1)在同一行中,每行两端都是 1,与这两个 1 等距离的项的系数 相等(2)在相邻的两行中,除 1 以外的每一个数都等于它“肩上 ”两个数的和,即 C Crn 1C r 1n rn2二项式系数的性质(1)对称性:在(ab) n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C C ,C C ,C C .0n n 1n n 1n rn n rn(2)增减性与最大值:当 k0,设第 r1 项系数最大则 ,化简可得 r .8m 1m 1 9mm 1由于只有第 6。

19、1.3.2 “杨辉三角”与二项式系数的性质,第一章 1.3 二项式定理,学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数. 2.理解二项式系数的性质并灵活运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 “杨辉三角”与二项式系数的性质,(ab)n的展开式的二项式系数,当n取正整数时可以表示成如下形式:,思考1,从上面的表示形式可以直观地看出什么规律?,答案,答案 在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和.,思考2,计。

【杨辉三角系数集】相关PPT文档
【杨辉三角系数集】相关DOC文档
标签 > 杨辉三角系数集[编号:21077]