人教A版高中数学选修2-3课件1.2.1 排列二

习题课 二项式定理,第一章 计数原理,学习目标 1.能熟练地掌握二项式定理的展开式及有关概念. 2.会用二项式定理解决与二项式有关的简单问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.二项式定理及其相关概念,2.二项式系数的四个性质(杨辉三角的规律) (1)对称性: ; (2)性质:

人教A版高中数学选修2-3课件1.2.1 排列二Tag内容描述:

1、习题课 二项式定理,第一章 计数原理,学习目标 1.能熟练地掌握二项式定理的展开式及有关概念. 2.会用二项式定理解决与二项式有关的简单问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.二项式定理及其相关概念,2.二项式系数的四个性质(杨辉三角的规律) (1)对称性: ; (2)性质: ; (3)二项式系数的最大值:当n是偶数时,中间的 取得最大值,即_最大;当n是奇数时,中间的 相等,且同时取得最大值,即_ 最大; (4)二项式系数之和: ,所用方法是_ _.,赋,值法,一项,两项,m,1,题型探究,命题角度1 两个二项式积的问题 例1 (1)在(1x)6(1。

2、2.1.2 离散型随机变量的分布列(一),第二章 2.1 离散型随机变量及其分布列,学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念. 2.了解分布列对于刻画随机现象的重要性. 3.掌握离散型随机变量分布列的表示方法和性质.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 离散型随机变量的分布列,思考,掷一枚骰子,所得点数为X,则X可取哪些数字?X取不同的值时,其概率分别是多少?你能用表格表示X与P的对应关系吗?,答案,(1)离散型随机变量的分布列的概念 一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一。

3、第一章 计数原理,1.1 分类加法计数原理与分步乘法计数原理(一),学习目标 1.理解分类加法计数原理与分步乘法计数原理. 2.会用这两个原理分析和解决一些简单的实际计数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 分类加法计数原理,第十三届全运会在中国天津盛大召开,一名志愿者从上海赶赴天津为游客提供导游服务,每天有7个航班,6列火车.,思考1,该志愿者从上海到天津的方案可分几类?,答案,答案 两类,即乘飞机、坐火车.,思考2,这几类方案中各有几种方法?,答案,答案 第1类方案(乘飞机)有7种方法,第2类方案(坐火车)有。

4、1.3.2 “杨辉三角”与二项式系数的性质,第一章 1.3 二项式定理,学习目标 1.了解杨辉三角,会用杨辉三角求二项式乘方次数不大时的各项的二项式系数. 2.理解二项式系数的性质并灵活运用.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 “杨辉三角”与二项式系数的性质,(ab)n的展开式的二项式系数,当n取正整数时可以表示成如下形式:,思考1,从上面的表示形式可以直观地看出什么规律?,答案,答案 在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和.,思考2,计。

5、章末复习课,第二章 随机变量及其分布,学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. 2.理解超几何分布及其导出过程,并能够进行简单的应用. 3.了解条件概率和两个事件相互独立的概念,理解n次独立重复试验模型及二项分布,并能解决一些简单的实际问题.,4.理解取有限个值的离散型随机变量的均值、方差的概念,能计算简单的离散型随机变量的均值、方差,并能解决一些简单的实际问题. 5.通过实际问题的频率分布直方图,了解正态分布曲线的特点及曲线所表示的意义.,题型探究,知识梳理,内。

6、3.1 回归分析的基本思想及其初步应用,第三章 统计案例,学习目标 1.了解随机误差、残差、残差图的概念. 2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤.,题型探究,问题导学,内容索引,当堂训练,问题导学,请问如何表示推销金额y与工作年限x之间的相关关系?y关于x的线性回归方程是什么?,知识点一 线性回归模型,思考,某电脑公司有5名产品推销员,其工作年限与年推销金额数据如下表:,答案,答案 画出散点图,由图可知,样本点散布在一条直线附近,因此可用回归直线表示变量之间的相关关系.,(1)函数关系是一种 关。

7、章末复习课,第三章 统计案例,学习目标 1.会求线性回归方程,并用回归直线进行预报. 2.理解独立性检验的基本思想及实施步骤.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.最小二乘法,对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则线性回归方程为 .,2.22列联表 22列联表如表所示:,ab,cd,ac,bd,其中n 为样本容量.,abcd,3.独立性检验 常用随机变量,K2 来检验两个变量是否有关系.,题型探究,例1 某城市理论预测2010年到2014年人口总数与年份的关系如表所示:,解答,类型一 线性回归分析,(1)请画出上表数据的散点图;,解 散点图如图。

8、章末复习课,第一章 计数原理,学习目标 1.理解分类加法计数原理和分步乘法计数原理,能结合具体问题的特征,合理选择两个计数原理来分析和解决一些简单的实际问题. 2.理解排列、组合的概念,能利用计数原理推导排列数和组合数公式,掌握组合数的两个性质,并能用它们解决实际问题. 3.能利用计数原理证明二项式定理,掌握二项式定理和二项展开式的性质,并能应用它们解决与二项展开式有关的计算和证明问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.分类加法计数原理 完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在。

9、2.3.2 离散型随机变量的方差,第二章 2.3 离散型随机变量的均值与方差,学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 方差、标准差的定义及方差的性质,甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为X和Y,X和Y的分布列如下:,思考1,试求E(X),E(Y).,答案,思考2,能否由E(X)与E(Y)的值比。

10、第一章 计数原理,1.1 分类加法计数原理与分步乘法计数原理(二),学习目标 巩固分类加法计数原理和分步乘法计数原理,并能灵活应用这两个计数原理解决实际问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 两个计数原理的区别与联系,知识点二 两个计数原理的综合应用,解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点: (1)合理分类,准确分步:处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分。

11、2.1.2 离散型随机变量的分布列(二),第二章 2.1 离散型随机变量及其分布列,学习目标 1.进一步理解离散型随机变量的分布列的求法、作用. 2.理解两点分布和超几何分布.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 两点分布,随机变量X的分布列为,若随机变量X的分布列具有上表的形式,则称X服从两点分布,并称p为成功概率.,P(X1),知识点二 超几何分布,思考,在含有5名男生的100名学生中,任选3人,求恰有2名男生的概率表达式.,答案,一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 P(Xk)_,k0,1,2,m,其中mminM。

12、习题课 两个计数原理与排列、组合,第一章 计数原理,学习目标 1.进一步理解和掌握分类加法计数原理和分步乘法计数原理. 2.进一步深化排列与组合的概念. 3.能综合运用排列、组合解决计数问题.,题型探究,内容索引,当堂训练,题型探究,命题角度1 “类中有步”的计数问题 例1 电视台在某节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有_种不同的结果.,类型一 两个计数原理的应用,答案,解析,28 800,解。

13、2.2.2 事件的相互独立性,第二章 2.2 二项分布及其应用,学习目标 1.在具体情境中,了解两个事件相互独立的概念. 2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 相互独立的概念,甲箱里装有3个白球、2个黑球,乙箱里装有2个白球,2个黑球.从这两个箱子里分别摸出1个球,记事件A“从甲箱里摸出白球”,B“从乙箱里摸出白球”.,思考1,事件A发生会影响事件B发生的概率吗?,答案,答案 不影响.,思考2,P(A),P(B),P(AB)的值为多少?,答案,思考3,P(AB)与P(A),P(B)有什么。

14、1.3.1 二项式定理,第一章 1.3 二项式定理,学习目标 1.能用计数原理证明二项式定理. 2.掌握二项式定理及其展开式的通项公式. 3.会用二项式定理解决与二项展开式有关的简单问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 二项式定理及其相关概念,思考1,我们在初中学习了(ab)2a22abb2,试用多项式的乘法推导(ab)3,(ab)4的展开式.,答案,答案 (ab)3a33a2b3ab2b3,(ab)4a44a3b6a2b24ab3b4.,思考2,上述两个等式的右侧有何特点?,答案,答案 (ab)3的展开式有4项,每项的次数是3;(ab)4的展开式有5项,每一项的次数为4.,思考3,能用类。

15、1.2.2 组合(一),第一章 1.2 排列与组合,学习目标 1.理解组合及组合数的概念. 2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 组合的定义,思考,从3,5,7,11中任取两个数相除; 从3,5,7,11中任取两个数相乘. 以上两个问题中哪个是排列?与有何不同特点?,答案,答案 是排列,中选取的两个数是有序的,中选取的两个数无需排列.,一般地,从n个不同元素中取出m(mn)个元素 ,叫做从n个不同元素中取出m个元素的一个组合.,梳理,合成一组,思考1,知识点二 组合数与组合数公。

16、2.4 正态分布,第二章 随机变量及其分布,学习目标 1.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 2.了解变量落在区间(,(2,2,(3,3的概率大小. 3.会用正态分布去解决实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 正态曲线,思考,函数f(x) xR的图象如图所示.试确定函数f(x)的解析式.,答案,(1)正态曲线,梳理,(2)正态曲线的性质 曲线位于x轴 ,与x轴不相交; 曲线是单峰的,它关于直线 对称;,上方,x,曲线与x轴之间的面积为 ; 当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移,如图甲所。

17、1.2.2 组合(二),第一章 1.2 排列与组合,学习目标 1.能应用组合知识解决有关组合的简单实际问题. 2.能解决有限制条件的组合问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 组合的特点,思考,组合的特征有哪些?,答案,答案 组合取出的元素是无序的.,(1)组合的特点是只取不排 组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m次不放回地取出. (2)组合的特性 元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求. (3)相同的组合 根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何)。

18、第第 2 课时课时 排列的应用排列的应用 学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列, 能应用排列数公 式解决简单的实际问题 1排列数公式 Am nn(n1)(n2)(nm1)(n,mN,mn) n! nm!. Annn(n1)(n2)2 1n!(叫做 n 的阶乘)另外,我们规定 0!1. 2应用排列与排列数公式求解实际问题中的计数问题的基本步骤 类型一 无限制条件。

19、第一章 1.2 排列与组合,1.2.1 排列(一),学习目标 1.理解并掌握排列的概念. 2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 排列的定义,从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.,思考1,让你安排这项活动需要分几步?,答案,答案 分两步.第1步确定上午的同学; 第2步确定下午的同学.,思考2,甲丙和丙甲是相同的排法吗?,答案,答案 不是.,一般地,从n个不同元素中取出m(mn)个元素,按照 排成一列,叫做从n个不同。

20、第一章 1.2 排列与组合,1.2.1 排列(二),学习目标 1.进一步加深对排列概念的理解. 2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点 排列及其应用,1.排列数公式 (n,mN*,mn) . (叫做n的阶乘).另外,我们规定0! . 2.应用排列与排列数公式求解实际问题中的计数问题的基本步骤,n(n1)(n2)(nm1),n(n1)(n2)21,n!,1,题型探究,例1 (1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?,解 从7本不同的书中选3本送给3名同学,相当于从7个元素中任。

【人教A版高中数学选修2-3课】相关PPT文档
人教A版高中数学选修2-3课件:2.4 正态分布
【人教A版高中数学选修2-3课】相关DOC文档
标签 > 人教A版高中数学选修2-3课件1.2.1 排列二[编号:90571]