高斯小学奥数五年级下册含答案第05讲_计数综合

第十讲 比例计算与列表分析 比例是五年级的重要内容,之前我们已经学习过一些简单的比例问题,如按比例分配、 化连比以及比例中的不变量这一讲中,我们将继续比例的学习 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

高斯小学奥数五年级下册含答案第05讲_计数综合Tag内容描述:

1、第十讲 比例计算与列表分析 比例是五年级的重要内容,之前我们已经学习过一些简单的比例问题,如按比例分配、 化连比以及比例中的不变量这一讲中,我们将继续比例的学习 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题 1 学校组织体检,收费标准如下:老师每人 3 元,学生每人 2 元已知老师和学生的人数 比为 2:9,共收得体检费 3120 元那么老师、学生各有多少人? 分析:老师、学生的人。

2、第二讲 圆与扇形进阶 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 自然界中,圆与方是最基本的两种图形古人认为“天圆地方”,宇宙就像一个圆形的大 锅盖在一个方形的棋盘上 中国古代的建筑也会经常采用圆形和正方形的图案 而在面积计 算中,圆与正方形也有很大的关系 关于正方形和圆,有以下的面积关系: 方中圆:正方形面积:内切圆面积=4: 圆中方:圆面积:内接正方形面积=:2 由此我们可以进一步推断: 圆。

3、第一讲 圆与扇形初步 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 圆是宇宙中最简单的图形:天上的太阳、月亮、行星和恒星,它们在太空中呈现圆和球 形;地上的滚滚车轮,家里的盘子、碗、钟表也都是圆的 在自然界中,没有像圆那样美的图形了圆匀称、饱满、光滑、对称,常用来象征吉祥 如意,表达人们的良好愿望:圆满、圆梦、团圆 古希腊毕达哥拉斯学派认为: “一切立体图形中最美的是球。

4、第五讲 抽屉原理二 本讲知识点汇总: 一、 最不利原则: 为了保证保证 能完成一件事情, 需要考虑在最倒霉 (最不利) 的情况下, 如何能达到目标 二、 抽屉原理: 形式 1:把个苹果放到 n 个抽屉中,一定有 2 个苹果放在一个抽屉里; 形式 2:把个苹果放到 n 个抽屉中,一定有个苹果放在一个抽屉 里 例1 中国奥运代表团的 173 名运动员到超市买饮料, 已知超市有可乐、 雪碧、 芬达、 橙汁、 味全和矿泉水 6 种饮料, 每人各买两种不同的饮料, 那么至少多少人买的饮料完全相同? 分析分析本题的“抽屉”是饮料的选法, “苹果”是 173 。

5、 第第 23 讲讲计数综合二计数综合二 兴趣篇兴趣篇 1、 同时能被 6,7,8,9 整除的四位数有多少个? 2、从 1,2,3,9 这 9 个数中选出 2 个数,请问: (1)要使两数之和是 3 的倍数,一共有多少种不同的选法? (2)要使两数之积是 3 的倍数,一共有多少种不同的选法? 3、在所有由 1、3、5、7、9 中的 3 个不同数字组成的三位数中,有多少个是 3 的倍数? 。

6、第九讲 立体几何 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 首先,我们来学习一下长方体、正方体的体积与表面积的计算方法 图形 体积 表面积 Vabc 长方体 2Sabbcca 表面 3 Va 正方体 2 6Sa 正方体 a b c a 练一练 1 一个正方体的棱长总和是 72 厘米,它的一个面是边长_厘米的正方形,它的表 面积是_平方厘米,体积是_立方厘米 2 一个长方体的长是 5 分米,宽是 45 厘米,高是 24 厘米,它的表面积是_。

7、第十八讲 经济问题 经济问题,就是与金钱交易、资本变化相关的应用题在学校里,同学们已经初步 了解了一些与经济有关的知识,学习了单价、数量、总价的概念,它们之间的联系是: 单价 数量总价在本讲中,我们将进一步学习与经济有关的问题 同学们先来看一个例子:商店进了一批篮球,一共 200 个买入时每个篮球花了 90 元,商店决定将每个篮球按 150 元卖出实际卖出篮球时打了 9 折,最后一共卖出 了 190 个 在这个例子中, 进货时90 元是单价, 200 个是数量, 进货一共花了90 20018000 元,这些是我们已经学过的经济学概念,下面补充一些。

8、第七讲 位值原理 在十进制中, 每个数都是由 09 这十个数字中的若干个组成的, 而每个数字在数中都占 一个数位,数的大小是由数字和数字所处的数位两方面共同决定的比如一个数由 1、2、3 三个数字组成, 我们并不能确定这个数是多少, 因为 1、 2、 3 能组成很多数, 例如 213、 321、 123、但如果说 1 在百位,2 在十位,3 在个位这样去组成一个数,就能很清楚地知道 这个数应该是 123 从这个例子可以看出, 一个数的大小由数位和数位上的数字共同决定, 一个数字在不同 的数位上表示不同的大小: 个位上的数字代表几个 1; 十位上的数字。

9、第十九讲 计数综合提高上 一、 枚举法 1、简单枚举 2、分类枚举 3、特殊的枚举:标数法、树形图 二、 加法原理分类 如果完成一件事有几类方式, 在每一类方式中又有不同的方法, 那么把每类的方法 数相加就得到所有的方法数 加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选; (2)类与类之间可以相互替代,只需要选择某一类就可以满足要求 三、 乘法原理分步 如果完成一件事分为几个步骤, 在每一个步骤中又有不同的方法, 那么把每步的方 法数相乘就得到所有的方法数 乘法原理的步与步之间满足下列要求。

10、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。

11、第八讲 水管问题 在工程问题中还有更复杂的一类问题,称为水管问题一般来说,一个水池 里既有进水管,也有排水管进水管可以看成是一个“灌水”的工程队,而每根 排水管可以看成是一个“帮倒忙”的“排水”工程队,因此水管问题就是既有人 做事情,也有人“帮倒忙”的工程问题 水管问题虽然比普通工程问题更复杂一些,但是基本解题思路还是一样,关 键在于求水管的工作效率 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 。

12、第十七讲 浓度问题 我们知道,将糖溶于水得到糖水,将盐溶于水得到盐水,将纯酒精溶于水得到酒精溶 液 通常把被溶解的物质叫做溶质溶质, 如糖、 盐、 纯酒精等; 把溶解这些溶质的液体称为溶剂溶剂, 如水;溶质和溶剂的混合液体称为溶液溶液,如糖水、盐水、酒精溶液等 一般地,有下面的关系式: 溶质的重量溶剂的重量溶液的重量 例如:50 克纯酒精和 150 克水混合得到 200 克酒精溶液 通常我们都有这样的体会,当我们往白水中加入更多的糖时,糖水就会越来越甜为了 表征糖水的甜度并且量化这种表征,我们引入浓度这一概念也就是浓度越。

13、第六讲 钟表问题 常见的钟表问题主要是讨论钟表上的时针、 分针和秒针之间的位置关系, 这和我们前面 学习过的环形路线问题是很像的 就像前面漫画中画的一样, 可以将三种针想象成绕着钟表 不断奔跑的三个人,时针是一位老人,他慢悠悠的,12 个小时才能在钟表上散步一圈;分 针是一位中年人,他有条不紊的,一个小时走过钟表上的一圈;而秒针就像少年们,活力无 限,每分钟都绕着钟表欢快的跑过 但同学们会发现, 这样的速度表示法并没有明确的说明三种针的速度, 所以我们考虑能 不能将各个针的速度统一来表示?以前计算一个人或一个物。

14、第三讲 行程问题综合提高 漫画 第一幅图,一个主席台,上面有横幅,写着“高思运动会” 左图,100 米跑比赛的现场,直线跑道,小高和墨莫在比赛; 右图,3000 米跑比赛的现场,环形跑道,萱萱和卡莉娅在比赛 赛艇比赛的现场,阿呆和阿瓜在比赛 在小学数学中,行程问题占了很大的分量行程问题主要考查学生对于运动三要素:速 度、时间和路程的认识学习行程问题对于学生认识世界,以及以后理科课程的学习都有很 大的帮助 行程问题中最基本的内容是相遇和追及在与相遇追及相关的行程问题中,找出“路程 和”与“路程差”是解题的关键 练一练 。

15、第四讲 计算综合一 看完前面的故事, 同学们可能有些疑问, 真的需要那么多麦子吗?同学们可以试着算一 算:从第一个棋盘开始,需要的麦子数分别为:1 粒、2 粒、4 粒、8 粒、16 粒、32 粒、64 粒、128 粒、256 粒、512 粒、1024 粒、2048 粒、写到这里,同学们可以看出,开始的 时候麦粒数量并不大,但越到后面数量越多,最终会达到全世界都无法承受的程度我们的 直觉往往是正确的,但有的时候我们也会被直觉所欺骗 麦粒数量形成的这串数列,就叫做等比数列等比数列等比数列就是按照相同的倍数增加(或减 少)的数列,例如“麦粒数列”就。

16、第十二讲 计数综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 用 0、1、2、3、4、5 这六个自然数中的三个组成三位数,从个位到百位的数字依次增大,且任意 两个数字的差都不是 1,这样的三位数共有_个 2. 从 1 到 30 中选出两个不同的数相加,和大于 30 的情况有_种 3. 从 1000 到 2010 中,十位数与个位数相同的数有_个 4. 在用数字 0、1 组成一个 6 位数中,至少有 4 个连续的 1 的数共有_个 5. 3 个海盗分 30 枚金币,如果每个海盗最多分 12 枚,一共有_种不同的。

17、第十五讲 数字谜中的计数 上一讲我们讲解了一些与数论相关的计数问题, 这一讲我们来研究一下数字谜中的计数 问题,首先我们来看竖式问题 例1 如图,请在方框中填入 04 中的数字,使竖式成立小高的填法如下中图,卡莉娅的 填法如下右图,墨莫说,还有很多种填法同学们你能判断出一共有多少种不同的填法 吗? 分析分析观察可知竖式中没有进位,个位、十位、百位上的数字和均为 4,本题难度一 般,但是同学做题时要注意准确性 练习 1、如图,方框中都是 03 中的数字,使竖式成立,一共有多少种填法? 例2 如图, 方框中都是36中的数字, 求。

18、第十二讲 几何计数 漫画,共一格 一群古代的人在田地中劳作,田地中阡陌交错。旁边文字描述:西周时期,道路和渠道 纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。 分割田地大概有 3 条横线、4 条竖线左右,可适当增减。人的耕作情况要符合西周时的 实际情况,比如不能有拖拉机,不能有牛耕。 后面给出问题:在图中,有多少个“井”字? 几何计数, 同学们一看这一讲的名字就知道了, 我们学习的内容就是专门数几何图形的 个数可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画 好了, 一边。

19、第十四讲 数论相关的计数 在前面的学习中,我们学习了解决计数问题的一些基本方法,包括:枚举法、树形图、 分类讨论、加法原理和乘法原理、排列与组合等计数问题是多种多样的,它经常与其他的 知识联系在一起,比如几何、数论、数字谜等等今天让我们来研究一下结合了数论知识的 计数问题 例1 恰好能同时被 6,7,8,9 整除的四位数有多少个? 分析分析大家还记得公倍数怎么求吗? 练习 1、恰好能同时被 4,5,6 整除的三位数有多少个? 例2 用 1、2、3、4、5、7 这 6 个数字各一次组成六位数,并且使这个六位数是 11 的倍数, 有多少种不。

20、第五讲 计数综合 从三年级开始到现在, 我们已经学了很多有关计数的讲次, 其中包括枚举法、 加乘原理、 排列组合、容斥原理等我们先来做一个简单的小结和复习 枚举法是万能的方法, 只要有足够多的时间和精力 并且往往在一些复杂棘手的题目中, 别的方法都不能适用, 此时就能体会到枚举法的“威力” 使用枚举法时一定要注意有序思考有序思考 加法原理强调的是分类分类, 计数时我们只需选择其中的某一类即可以满足要求, 类与类之 间可以相互替代 乘法原理强调的是分步分步,每一步只是整个事情的一部分,必须全部完成才能满足结论, 缺。

【高斯小学奥数五年级下册含】相关DOC文档
标签 > 高斯小学奥数五年级下册含答案第05讲_计数综合[编号:114079]