第第 2 课时课时 导数与函数的极值导数与函数的极值、最值最值 题型一题型一 用导数求解函数极值问题用导数求解函数极值问题 命题点 1 根据函数图象判断极值 典例 设函数 f(x)在 R 上可导,其导函数为 f(x),且函数 y(1x)f(x)的图象如图所示, 则下列结论中一定成立的是( ) A函数
高考数学一轮复习学案3.1 导数的概念及运算含答案Tag内容描述:
1、第第 2 课时课时 导数与函数的极值导数与函数的极值、最值最值 题型一题型一 用导数求解函数极值问题用导数求解函数极值问题 命题点 1 根据函数图象判断极值 典例 设函数 f(x)在 R 上可导,其导函数为 f(x),且函数 y(1x)f(x)的图象如图所示, 则下列结论中一定成立的是( ) A函数 f(x)有极大值 f(2)和极小值 f(1) B函数 f(x)有极大值 f(2)和极小值 f(1) C函数 f(x)有极大值 f(2)和极小值 f(2) D函数 f(x)有极大值 f(2)和极小值 f(2) 答案 D 解析 由题图可知,当 x0; 当20. 由此可以得到函数 f(x)在 x2 处取得极大值, 在 x2 处取得极小值。
2、 6.1 数列的概念与简单表示法数列的概念与简单表示法 最新考纲 考情考向分析 1.了解数列的概念和几种简单的表示方法 (列表、图象、通项公式). 2.了解数列是自变量为正整数的一类特殊 函数. 以考查 Sn与 an的关系为主,简单的递推关系也 是考查的热点 本节内容在高考中以选择、 填空 的形式进行考查,难度属于低档. 1数列的定义 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项 2数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系 分类 递增数列 an1_an 其中。
3、 3.2 导数的应用导数的应用 最新考纲 考情考向分析 1.了解函数单调性和导数的关系;能利用导数研 究函数的单调性, 会求函数的单调区间(其中多项 式函数一般不超过三次) 2.了解函数在某点取得极值的必要条件和充分条 件;会用导数求函数的极大值、极小值(其中多项 式函数一般不超过三次); 会求闭区间上函数的最 大值、最小值(其中多项式函数一般不超过三次) 3.会利用导数解决某些实际问题(生活中的优化 问题). 考查函数的单调性、 极值、 最值, 利用函数的性质求参数范围;与 方程、 不等式等知识相结合命题, 强化函数与方程思想、转化。
4、第第 3 课时课时 导数与函数的综合问题导数与函数的综合问题 题型一题型一 导数与不等式导数与不等式 命题点 1 证明不等式 典例 (2017 贵阳模拟)已知函数 f(x)1x1 ex ,g(x)xln x. (1)证明:g(x)1; (2)证明:(xln x)f(x)1 1 e2. 证明 (1)由题意得 g(x)x1 x (x0), 当 00, 即 g(x)在(0,1)上为减函数,在(1,)上为增函数 所以 g(x)g(1)1,得证 (2)由 f(x)1x1 ex ,得 f(x)x2 ex , 所以当 00, 即 f(x)在(0,2)上为减函数,在(2,)上为增函数, 所以 f(x)f(2)11 e2(当且仅当 x2 时取等号) 又由(1)知 xln x1(当且仅当 x1 时取等号), 且等号。
5、3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数yc(c为常数),yx,yx2,y的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数1导数与导函数的概念(1)一般地,函数yf(x)在xx0处的瞬时变化率是,我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|,即f(x0).(2)如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a。
6、3.1 导数的概念及运算,第三章 导数及其应用,ZUIXINKAOGANG,最新考纲,1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数定义求函数yc(c为常数),yx,yx2,y 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.导数与导函数的概念,f(x0)或y|,xx0,知识梳理。
7、第三章 导数及其应用考试内容等级要求导数的概念A导数的几何意义B导数的运算B利用导数研究函数的单调性与极值B导数在实际问题中的应用B3.1导数的概念及运算考情考向分析导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为填空题或解答题的第(1)问,低档难度1导数的概念(1)函数yf(x)从x1到x2的平均变化率函数yf(x)从x1到x2的平均变化率为,若xx2x1,yf(x2)f(x1),则平均变化率可表示为.(2)设函数yf(x)在区间(a,b)上有定义,x0(a,b),当x无限趋近于0时,比值无限趋近于。
8、第三篇 导数及其应用专题3.01导数的概念及运算【考试要求】1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数yc,yx,yx2,yx3,y,y的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(axb)的导数;6.会使用导数公式表.【知识梳理】1.函数yf(x)在xx0处的导数(1)定义:称函数yf(x)在xx0处的。
9、第三篇 导数及其应用专题3.01导数的概念及运算【考试要求】1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数yc,yx,yx2,yx3,y,y的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(axb)的导数;6.会使用导数公式表.【知识梳理】1.函数yf(x)在xx0处的导数(1)定义:称函数yf(x)在xx0处的。
10、 5.1 平面向量的概念及线性运算平面向量的概念及线性运算 最新考纲 考情考向分析 1.了解向量的实际背景 2.理解平面向量的概念, 理解两个向量相等的含义 3.理解向量的几何表示 4.掌握向量加法、 减法的运算, 并理解其几何意义 5.掌握向量数乘的运算及其几何意义,理解两个向 量共线的含义 6.了解向量线性运算的性质及其几何意义. 主要考查平面向量的线性运算(加法、减 法、数乘向量)及其几何意义、共线向量 定理常与三角函数、 解析几何交汇考查, 有时也会有创新的新定义问题;题型以 选择题、填空题为主,属于中低档题 目偶尔会在解答。
11、3.1导数的概念及运算最新考纲考情考向分析1.了解导数概念的实际背景2.通过函数图象直观理解导数的几何意义3.能根据导数定义求函数yc(c为常数),yx,yx2,yx3,y,y的导数4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度.1.平均变化率一般地,已知函数yf(x),x0,x1是其定义域内不同的两点,记xx1x0,yy1y0f(x1)f(x0)f(x0x)f(x0),则当x0时,商,称作函数yf(x)。
12、第三篇 导数及其应用专题 3.01 导数的概念及运算【考试要求】1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数 yc,y x,yx 2,y x 3,y ,y 的导数;1x x5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如 f(axb) 的导数;6.会使用导数公式表.【知识梳理】1.函数 yf(x) 在 xx 0 处的导数(1)定义:。
13、第三章第三章 导数及其应用导数及其应用 高考导航高考导航 考试要求 重难点击 命题展望 1.导数概念及其几何意义 1了解导数概念的实际背景; 2理解导数的几何意义. 2.导数的运算 1能根据导数定义, 求函数 ycc 为常数, yx,yx2。
14、第三章 导数及其应用 考点要求考点要求 1导数概念及其几何意义 1了解导数概念的实际背景 2理解导数的几何意义 2导数的运算 1能根据导数定义求函数 yCC 为常数,yx,yx2,yx3,y1 x,y x的导数 2能利用给出的基本初等函数的。
15、 3.1 导数的概念及运算导数的概念及运算 最新考纲 考情考向分析 1.了解导数概念的实际背景 2.通过函数图象直观理解导数的几何意义 3.能根据导数定义求函数 yc(c 为常数), y x,yx2,yx3,y1 x,y x的导数 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,(理)能求简 单的复合函数(仅限于形如 f(axb)的复合函 数)的导数. 导数的概念和运算是高考的必考 内容,一般渗透在导数的应用中 考查;导数的几何意义常与解析 几何中的直线交汇考查;题型为 选择题或解答题的第(1)问,低档 难度. 1导数与导函数的概念 (1)一般。