北京四中九年级下册数学二次函数全章复习与巩固知识讲解基础

第 1 页 共 5 页 二次函数二次函数 y=ay=a(x x- -h)h) 2 2+k(a +k(a0)0)的图的图象象与性质与性质知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1. .会用描点法画出二次函数 2 ()ya xhk(a、 h、 k 常数, a0)的图象 掌握抛物线 2

北京四中九年级下册数学二次函数全章复习与巩固知识讲解基础Tag内容描述:

1、第 1 页 共 5 页 二次函数二次函数 y=ay=a(x x- -h)h) 2 2+k(a +k(a0)0)的图的图象象与性质与性质知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1. .会用描点法画出二次函数 2 ()ya xhk(a、 h、 k 常数, a0)的图象 掌握抛物线 2 ()ya xhk 与 2 yax图象之间的关系; 2.熟练掌握函数 2 ()ya xhk的有关性质, 并能用函数 2 ()ya xhk的性质解决一些实际问题; 3. .经历探索 2 ()ya xhk的图象及性质的过程,体验 2 ()ya xhk与 2 yax、 2 yaxk、 2 ()ya xh之间的转化过程,深刻理解数学建模思想及数形结合的思想方法 【要点梳理。

2、第 1 页 共 4 页 二次函数二次函数 y=a(x-h)2+k(a0)的图的图象象与性质与性质巩固练习(巩固练习(基础)基础) 【巩固练习巩固练习】 一、选择题一、选择题 1.抛物线 2 (2)3yx 的顶点坐标是( ) A(2,-3) B(-2,3) C(2,3) D(-2,-3) 2.函数 y= 2 1 x 2+2x+1 写成 y=a(xh)2+k 的形式是( ) A.y= 2 1 (x1) 2+2 B.y= 2 1 (x1) 2+ 2 1 C.y= 2 1 (x1) 23 D.y= 2 1 (x+2) 21 3抛物线 y= 2 1 x 2向左平移 3 个单位,再向下平移 2 个单位后,所得的抛物线表达式是( ) A.y= 2 1 (x+3) 22 B.y= 2 1 (x3) 2+2 C.y= 2 1 (x3) 22 D.y= 2 1 (x+3) 2。

3、第 1 页 共 8 页 二次函数二次函数 y=axy=ax 2 2+bx+c(a +bx+c(a0)0)的图的图象象与性质与性质知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1. 会用描点法画二次函数 2 (0)yaxbxc a的图象; 会用配方法将二次函数 2 yaxbxc的解 析式写成 2 ()ya xhk的形式; 2.通过图象能熟练地掌握二次函数 2 yaxbxc的性质; 3.经历探索 2 yaxbxc与 2 ()ya xhk的图象及性质紧密联系的过程, 能运用二次函数的图象 和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想 【要点梳理】【要点梳理】 要点一、要点一、二次函数二。

4、第 1 页 共 12 页 二元一次方程组二元一次方程组全章复习与巩固全章复习与巩固(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1.了解二元一次方程(组)的有关概念,会解简单的(数字系数) ;能根据具体问题中的数 量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性. 2.二元一次方程组的图像解法,初步体会方程与函数的关系. 3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问 题为简单问题的划归思想. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要点一、二元一次。

5、第 1 页 共 5 页 二次函数二次函数 y=ax2+bx+c(a0)的图的图象象与性质与性质巩固练习巩固练习(基础)(基础) 【巩固练习巩固练习】 一、选择题一、选择题 1. 将二次函数 2 23yxx化为 2 ()yxhk的形式,结果为( ) A 2 (1)4yx B 2 (1)4yx C 2 (1)2yx D 2 (1)2yx 2已知二次函数 2 yaxbxc的图象,如图所示,则下列结论正确的是( ) A0a B0c C 2 40bac D0abc 3若二次函数 2 5yxbx配方后为 2 (2)yxk,则 b、k 的值分别为( ) A0,5 B0,1 C-4,5 D-4,1 4抛物线 2 yxbxc的图象向右平移 2 个单位长度,再向下平移 3 个单位长度,所得图象的。

6、第 1 页 共 8 页 二次函数二次函数 y=axy=ax 2 2(a (a0)0)的图象与性质的图象与性质知识讲解(提高)知识讲解(提高) 【学习目标】【学习目标】 1经历探索二次函数 y=ax2和 y=ax2c 的图象的作法和性质的过程,进一步获得将表格、表达式、图 象三者联系起来的经验 2会作出 y=ax2和 y=ax2c 的图象,并能比较它们与 y=x2的异同,理解 a 与 c 对二次函数图象的影响 3能说出 y=ax2c 与 y=ax2图象的开口方向、对称轴和顶点坐标 4体会二次函数是某些实际问题的数学模型 5.掌握二次函数 y=ax 2(a0)与 y=ax2+c (a0)的图象之间的关系. 【要点【要点。

7、第 1 页 共 4 页 二次函数二次函数 y=axy=ax 2 2(a (a0)0)的图象与性质的图象与性质巩固练习(基础)巩固练习(基础) 【巩固练习巩固练习】 一、选择题一、选择题 1.关于函数 y= 2 x的图象,则下列判断中正确的是( ) A.若 a、b 互为相反数,则 x=a 与 x=b 的函数值相等; B.对于同一个自变量 x,有两个函数值与它对应; C.对任一个实数 y,有两个 x 和它对应; D.对任意实数 x,都有 y0. 2.下列函数中,开口向上的是( ) A. 2 3yx B. 2 1 2 yx C. 2 yx D. 2 1 6 yx 3.把抛物线 2 yx向上平移 1 个单位,所得到抛物线的函数表达式为( ) A 2 1yx。

8、第 1 页 共 4 页 二次函数二次函数 y=ay=a(x x- -h)h) 2 2+k(a +k(a0)0)的图的图象象与性质与性质知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1. .会用描点法画出二次函数 2 ()ya xhk(a、 h、 k 常数, a0)的图象 掌握抛物线 2 ()ya xhk 与 2 yax图象之间的关系; 2.熟练掌握函数 2 ()ya xhk的有关性质, 并能用函数 2 ()ya xhk的性质解决一些实际问题; 3. .经历探索 2 ()ya xhk的图象及性质的过程,体验 2 ()ya xhk与 2 yax、 2 yaxk、 2 ()ya xh之间的转化过程,深刻理解数学建模思想及数形结合的思想方法 【要点梳理。

9、 第 1 页 共 10 页 二元一次方程组二元一次方程组全章复习与巩固全章复习与巩固(基础)(基础)知识讲解知识讲解 【学习目标】【学习目标】 1.了解二元一次方程(组)的有关概念,会解简单的(数字系数) ;能根据具体问题中的数 量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性. 2.二元一次方程组的图像解法,初步体会方程与函数的关系. 3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问 题为简单问题的划归思想. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要要点一、。

10、 第 1 页 共 6 页 二次函数二次函数 y=axy=ax 2 2+bx+c(a +bx+c(a0)0)的图的图象象与性质与性质知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1. 会用描点法画二次函数 2 (0)yaxbxc a的图象; 会用配方法将二次函数 2 yaxbxc的解 析式写成 2 ()ya xhk的形式; 2.通过图象能熟练地掌握二次函数 2 yaxbxc的性质; 3.经历探索 2 yaxbxc与 2 ()ya xhk的图象及性质紧密联系的过程, 能运用二次函数的图象 和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想 【要点梳理】【要点梳理】 要点一、要点一、二次函数。

11、 第 1 页 共 7 页 二次函数二次函数 y=axy=ax 2 2(a (a0)0)的图象与性质的图象与性质知识讲解(基础)知识讲解(基础) 【学习目标】【学习目标】 1经历探索二次函数 y=ax2和 y=ax2c 的图象的作法和性质的过程,进一步获得将表格、表达式、图 象三者联系起来的经验 2会作出 y=ax2和 y=ax2c 的图象,并能比较它们与 y=x2的异同,理解 a 与 c 对二次函数图象的影响 3能说出 y=ax2c 与 y=ax2图象的开口方向、对称轴和顶点坐标 4体会二次函数是某些实际问题的数学模型 【要点梳理】【要点梳理】 要点一、要点一、二次函数二次函数 y=axy=ax 2 。

12、第 1 页 共 10 页 锐角三角函数全章复习与巩固锐角三角函数全章复习与巩固-知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1.了解锐角三角函数的概念,能够正确使用 sinA 、cos A、tanA 表示直角三角形中两边的比;记忆 30、 45、60的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数; 2能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角 的度数; 3理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两 个锐角互。

13、第 1 页 共 6 页 实际问题与二次函数实际问题与二次函数知识讲解(基础)知识讲解(基础) 【学习目标】【学习目标】 1.能运用二次函数分析和解决简单的实际问题; 2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模 型; 3.培养分析问题、解决问题的能力和应用数学的意识 【要点梳理】【要点梳理】 要点一、要点一、列二次函数解应用题列二次函数解应用题 列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数 后,表示量与量的关系的代数式是含有两个变。

14、 第 1 页 共 10 页 锐角三角函数全章复习与巩固锐角三角函数全章复习与巩固-知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1.了解锐角三角函数的概念,能够正确应用 sinA 、cos A、tanA 表示直角三角形中两边的比;记忆 30、 45、60的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数; 2能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角 的度数; 3理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两 个锐角。

15、第 1 页 共 5 页 二次函数二次函数的概念的概念知识讲解(基础)知识讲解(基础) 【学习目标】【学习目标】 1.理解函数的定义、函数值、自变量、因变量等基本概念; 2.了解表示函数的三种方法解析法、列表法和图像法; 3.会根据实际问题列出函数的关系式,并写出自变量的取值范围; 4.理解二次函数的概念,能够表示简单变量之间的二次函数关系. 【要点梳理】【要点梳理】 要点一、要点一、函数的概念函数的概念 一般地,在一个变化过程中,如果有两个变量 x,y,对于自变量 x 在某一范围内的每一个确定值, y 都有惟一确定的值与它对应,。

16、 第 1 页 共 11 页 圆全章复习与巩固圆全章复习与巩固知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1理解圆及其有关概念,理解弧、弦、圆心角的关系; 2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所 对的圆周角的特征; 3了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆 的切线,会过圆上一点画圆的切线; 4了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆; 5了解正多边形的概念,掌握用等分圆周画圆的内接正。

17、第 1 页 共 10 页 二次函数全章复习与巩固二次函数全章复习与巩固巩固练习巩固练习(提高)(提高) 【巩固练习巩固练习】 一、选择题一、选择题 1已知抛物线 2 :310C yxx,将抛物线 C 平移得到抛物线 C 若两条抛物线 C、 C 关于直线 x1 对称则下列平移方法中,正确的是( ) A将抛物线 C 向右平移 5 2 个单位 B将抛物线 C 向右平移 3 个单位 C将抛的线 C 向右平移 5 个单位 D将抛物线 C 向右平移 6 个单位 2已知二次函数 2 yaxbxc的图象如图所示,则下列 5 个代数式:ac,a+b+c,4a-2b+c,2a+b,2a-b 中,其值大于 0 的个数为( ) A2 B3 C。

18、第 1 页 共 7 页 二次函数全章复习与巩固二次函数全章复习与巩固巩固练习巩固练习(基础)(基础) 【巩固练习巩固练习】 一、选择题一、选择题 1 将二次函数 2 yx的图象向右平移 1 个单位, 再向上平移 2 个单位后, 所得图象的函数表达式是( ) A 2 (1)2yx B 2 (1)2yx C 2 (1)2yx D 2 (1)2yx 2二次函数 2 yaxbxc的图象如图所示,则一次函数 2 4ybxbac与反比例函数 abc y x 在同一坐标系内的图象大致为( ) 3抛物线 2 yxbxc图象向右平移 2 个单位长度,再向下平移 3 个单位长度,所得图象的解析式为 2 23yxx,则 b、c 的值为( ) Ab2,c2 。

19、第 1 页 共 12 页 二次函数全章复习与巩固二次函数全章复习与巩固知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际 问题; 4会利用二次函数的图象求一元二次方程的近似解. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要点一、要点一、二次函数的定义二次函数的定义 一般地,如果是常。

20、第 1 页 共 8 页 二次函数全章复习与巩固二次函数全章复习与巩固知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际 问题; 4会利用二次函数的图象求一元二次方程的近似解. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要点一、要点一、二次函数的定义二次函数的定义 一般地,如果是常。

【北京四中九年级下册数学二】相关DOC文档

相关标签

标签 > 北京四中九年级下册数学二次函数全章复习与巩固知识讲解基础[编号:156098]