北京四中七年级上册数学二次根式的加减提高知识讲解

第 1 页 共 4 页 二元一次方程二元一次方程(组组)的相关概念的相关概念(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】【要点梳理】 要点一、要点一、二元一次方程二元一

北京四中七年级上册数学二次根式的加减提高知识讲解Tag内容描述:

1、第 1 页 共 4 页 二元一次方程二元一次方程(组组)的相关概念的相关概念(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】【要点梳理】 要点一、要点一、二元一次方程二元一次方程 含有两个未知数, 并且含有未知数的项的次数都是 1, 像这样的方程叫做二元一次方程 要点诠释:要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数. (2) “未。

2、第 1 页 共 12 页 二元一次方程组二元一次方程组全章复习与巩固全章复习与巩固(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1.了解二元一次方程(组)的有关概念,会解简单的(数字系数) ;能根据具体问题中的数 量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性. 2.二元一次方程组的图像解法,初步体会方程与函数的关系. 3.了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问 题为简单问题的划归思想. 【知识网络】【知识网络】 【要点梳理】【要点梳理】 要点一、二元一次。

3、 第 1 页 共 6 页 二元一次方程(组)与一次函数(提高)二元一次方程(组)与一次函数(提高) 【学习目标】【学习目标】 1.理解二元一次方程与一次函数的关系; 2.能根据一次函数的图象求二元一次方程组的近似解; 3.能利用二元一次方程组确定一次函数的表达式. 【要点梳理】【要点梳理】 要点一、二元一次方程与一次函数的关系要点一、二元一次方程与一次函数的关系 1. 任 何 一 个 二 元 一 次 方 程(0,)axbyc abc、为常数都 可 以 变 形 为 -(0,) ac yxabc bb 、为常数即为一个一次函数, 所以每个二元一次方程都对应一个一 次函数. 。

4、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(二)(二)-加减法加减法(基础基础)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫。

5、第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法代入法代入法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 理解消元的思想; 2. 会用代入法解二元一次方程组. 【要点梳理】【要点梳理】 要点一、要点一、消元法消元法 1.1.消元思想:消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二 元一次方程组转化为我们熟悉的一元一次方程, 我们就可以先求出一个未知数, 然后再求出 另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想. 2.2.消元的基本思路:消元的基本思路:未。

6、第 1 页 共 4 页 二元一次方程二元一次方程(组组)的相关概念的相关概念(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】【要点梳理】 要点一、要点一、二元一次方程二元一次方程 含有两个未知数, 并且含有未知数的项的次数都是 1 像这样的方程叫做二元一次方程 要点诠释:要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数. (2) “未知。

7、第 1 页 共 6 页 一次函数的应用(基础)一次函数的应用(基础) 【学习目标】【学习目标】 1. 能从实际问题的图象中获取所需信息; 2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式; 3. 能利用一次函数的图象及其性质解决简单的实际问题; 4. 提高解决实际问题的能力认识数学在现实生活中的意义,发展运用数学知识解决实际 问题的能力 【要点梳理】【要点梳理】 要点一、要点一、数学建模的一般思路数学建模的一般思路 数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建 模的过程中, 。

8、第 1 页 共 4 页 二次根式的乘除二次根式的乘除运算运算巩固练习巩固练习(基础)(基础) 【巩固练习】【巩固练习】 一、一、 选择题选择题 1.计算18827的结果是( ) A 4 6 3 B.18 6 C. 9 3 2 D. 1 6 4 2.当a0, b0 时,化简 33 50a b 得( ) A 50abab B.-50abab C.52abab D. 52abab 3.在 2222 , 6, 0.16 2 x xyx y中,最简二次根式有( ) A1 个 B.2 个 C.3 个 D.4 个 4. 化简二次根式 3 a的正确结果是( ) Aaa Ba a Ca a Daa 5.下列根式是最简二次根式的是( ) A8 B 24 xy C D 6. 已知,化简二次根式的正确结果为( ). A. B. C. D.。

9、 第 1 页 共 4 页 二元一次方程组解法二元一次方程组解法(提高提高)知识讲解知识讲解 【学习目标】【学习目标】 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3会对一些特殊的方程组进行特殊的求解 【要点梳理】【要点梳理】 要点一、要点一、加减消元法解二元一次方程组加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时, 将两个方程的两边分别相加或相 减, 就能消去这个未知数, 得到一个一元一次方程, 这种方法叫做加减消元法, 简称加减法 。

10、第 1 页 共 4 页 二次根式二次根式巩固练习巩固练习(基础)(基础) 【巩固练习】【巩固练习】 一选择题一选择题 1.若二次根式 1x 有意义,则 x 的取值范围是( ). A.1x Bx1 C.x0)=_. 10.若22xx=0,则 2 (1) 1 x x =_. 第 2 页 共 4 页 11.当 x0 时,化简 2 1-xx=_. 12.有如下判断: (1) 1 1010x yxy x (2) 1 5 5 =1 (3) 55 55 2424 (4)3 3 2 3 6 3 (5) 22 25 16541 (6) a bab 成立的条件是, a b同 号.其中正确的有_个. 三三 综合题综合题 13. 当x为何值时,下列式子有意义? (1) 2 1x (2) 2 x (3) 1 1 y x ; (4) 1 1 y x。

11、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算巩固练习巩固练习(提高)(提高) 【巩固练习】【巩固练习】 一、一、 选择题选择题 1.若 2 0,(1)xxx化简的结果是( ). A-1 B.1 C .2x-1 D.1-2x 2.下列计算正确的是( ) A B C D 3.计算 1 (0,0) b abab aab 等于( ). A 2 1 ab a b B. 2 1 ab ab C. 1 ab b D . b ab 4.把 m m 1 根号外的因式移到根号内,得( ) Am Bm Cm Dm 5.设2, 3,ab用含, a b的式子表示 0.54,则下列表示正确的是( ). A.0.3ab B.3ab C.0.1ab D. 2 0.1a b 6.若 2 2 3(2 2)0abab ,那么 b a的值是( ). A1 B.。

12、第 1 页 共 3 页 二二次根式的加减次根式的加减-巩固练习巩固练习(基础)(基础) 一一. .选择题选择题 1.下列根式中,与是同类二次根式的为( ) A B C D 2.下面说法正确的是( ) A. 被开方数相同的二次根式一定是同类二次根式 B. 与是同类二次根式 C. 与不是同类二次根式 D. 同类二次根式是根指数为 2 的根式 3.下列计算中,正确的是( ) A B C D 4. 若,则的值等于( ) A. 4 B. C. 2 D. 5.计算(32)(23)等于( ) A7 B. 6- 6+3 3-2 2 C.1 D. 6+3 3-2 2 6.下列计算正确的是( ) A. 2= bab( a) B. abab C. 22 +abab D. 1 aa a 二二。

13、第 1 页 共 4 页 二次根式二次根式巩固练习巩固练习(提高)(提高) 【巩固练习】【巩固练习】 一、选择题一、选择题 1.若代数式在实数范围内有意义,则 x 的取值范围为( ) Ax0 Bx0 Cx 0 Dx0 且 x 1 2.使式子有意义的未知数 x 有( )个 A0 B1 C2 D无数 3.下列说法正确的是( ) A 4是一个无理数 B函数 1 1 y x 的自变量 x 的取值范围是 x1 C8 的立方根是2 D.若点(2, )-3)PaQ和点(b,关于 x 轴对称,则ab的值为 5. 4. 已知 a,b,c 在数轴上的位置如图所示,则代数式( ) (A) 2c a (B) 32ab (C) ca (D) a 5. 若 ,则 等于( ) A B C D 6.将a。

14、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算. 2.能运用二次根式的有关性质进行分母有理化. 【要点梳理】【要点梳理】 要点要点一一、二次根式的、二次根式的乘乘法法 1 1. .乘法法则:乘法法则: (a0,b0),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:要点诠释: (1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数;(在本章中。

15、第 1 页 共 4 页 二次根式二次根式知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1 1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由. 2 2、理解并掌握下列结论: a0, (a0) , (a0) ,(a0) ,并利用它 们进行计算和化简 【要点梳理】【要点梳理】 要点一、二次根式的概念要点一、二次根式的概念 一般地,我们把形如(a0)的式子叫做二次根式, “”称为二次根号 要点诠释:要点诠释: 二次根式的两个要素:根指数为 2;被开方数为非负数. 要点二、二次根式的性质要点二、二次根式的性质 1.a0, (a0。

16、第 1 页 共 4 页 二次根式的加减二次根式的加减-巩固练习巩固练习(提高)(提高) 一一. .选择题选择题 1. 下面说法正确的是( ) A. 被开方数相同的二次根式一定是同类二次根式 B. 与是同类二次根式 C. 与不是同类二次根式 D. 同类二次根式是根指数为 2 的根式 2. 与不是同类二次根式的是( ) A. B. C. D. 3. 若,则的值等于( ) A. 4 B. C. 2 D. 4. 下列各式中运算正确的是( ) A.2510)5225( B.529)52( 2 C.1) 2 1 3 1 )(23( D. c a b a cba)( 5.()()a bb a b aa b的运算结果是( ) A 0 B. ()ab ba C. ()ab ab D. 2ab ab 6. 等腰三。

17、第 1 页 共 4 页 二次根式的乘除运算二次根式的乘除运算知识讲解知识讲解(提高提高) 【学习目标】【学习目标】 1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算. 2.能运用二次根式的有关性质进行分母有理化. 【要点梳理】【要点梳理】 要点要点一一、二次根式的、二次根式的乘乘法法 1 1. .乘法法则:乘法法则: (a0,b0),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:要点诠释: (1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数;(在本章中, 如。

18、第 1 页 共 3 页 二二次根式的加减次根式的加减-知识讲解知识讲解(基础)(基础) 【学习目标】【学习目标】 1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根 式,进行简单的二次根式加减运算; 2、会利用运算律和运算法则进行二次根式的混合运算. 【要点梳理】【要点梳理】 要点一、要点一、同类二次根式同类二次根式 1.1.定义定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根 式就叫做同类二次根式. 要点诠释:要点诠释: (1)判断几个二次根式是否是同类二次根式,必须先将二次根。

19、第 1 页 共 3 页 二次根式二次根式知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1 1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由. 2 2、理解并掌握下列结论: a0, (a0) , (a0) ,(a0) ,并利用它 们进行计算和化简 【要点梳理】【要点梳理】 要点一、二次根要点一、二次根式的概念式的概念 一般地,我们把形如(a0)的式子叫做二次根式, “”称为二次根号 要点诠释:要点诠释: 二次根式的两个要素:根指数为 2;被开方数为非负数. 要点二、二次根式的要点二、二次根式的性质性质 1.a0, (a0。

20、第 1 页 共 4 页 二次根式的加减二次根式的加减-知识讲解知识讲解(提高)(提高) 【学习目标】【学习目标】 1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根 式,进行简单的二次根式加减运算; 2、会利用运算律和运算法则进行二次根式的混合运算. 【要点梳理】【要点梳理】 要点一、要点一、同类二次根式同类二次根式 1.1.定义定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根 式就叫做同类二次根式. 要点诠释:要点诠释: (1)判断几个二次根式是否是同类二次根式,必须先将二次根。

【北京四中七年级上册数学二】相关DOC文档

相关标签

标签 > 北京四中七年级上册数学二次根式的加减提高知识讲解[编号:124264]