4.7相似三角形的性质

3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的

4.7相似三角形的性质Tag内容描述:

1、 3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的长度的问题,让学生体会数学转化的思想。体的长度的问题,让学生体会数学转化的思想。 重点:重点:运用。

2、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.1 3.4.1 相似三角形的判定相似三角形的判定 教学目标教学目标 1.1. 了解相似三角形的判定方法会用平行法判了解相似三角形的判定方法会用平行法判 定两个三角形相似定两个三角形相似 重点:重点: 用平行法判定两个三角形相似用平行法判定两个三角形相似 难点:难点:平行法判定三角形相似定。

3、要题随堂演练1(2018凉州区中考)已知 (a0,b0),下列变形错误的是( )a2 b3A. B2a3b ab 23C. D3a2bba 322如图的两个四边形相似,则 的度数是( )A87 B60 C75 D1203(2018自贡中考)如图,在ABC 中,点 D,E 分别是 AB,AC 的中点,若ADE的面积为 4,则ABC 的面积为( )A8 B12 C14 D164如图,正方形 ABCD的对角线 AC与 BD相交于点 O,ACB 的角平分线分别交 AB,BD 于 M,N 两点若 AM2,则线段 ON的长为( )A. B. C1 D.22 32 625. (2018云南中考)如图,已知 ABCD,若 ,则 ABCD 14 OA。

4、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第 2 课时 相似三角形的判定定理 1,212018利辛县模拟在三角形纸片 ABC 中,AB8,BC4,AC6,按下列方法沿虚线剪下,能使阴影部分的三角形与ABC 相似的是( )2如图 27220,在ABC 与ADE 中,BAC D,要使ABC 与ADE 相似,还需满足下列条件中的( )图 27220A. B ACAD ABAE ACAD BCDEC. D ACAD ABDE ACAD BCAE3如图 27221,网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点ACB 和DCE 的顶点都在格点上,ED 的延长线交 AB 于。

5、第四章 几何初步与三角形第七节 相似三角形姓名:_ 班级:_ 用时:_分钟1(2019易错题)两三角形的相似比是 23,则其面积之比是( )A. B232 3C49 D8272(2017兰州中考)已知 2x3y(y0),则下面结论成立的是( )A. B. xy 32 x3 2yC. D. xy 23 x2 y33(2018重庆中考 A 卷)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5 cm,6 cm 和 9 cm,另一个三角形的最短边长为 2.5 cm,则它的最长边为( )A3 cm B4 cmC4.5 cm D5 cm4(2018杭州中考)如图,小正方形的边长均为 1,则下列图中的三角形(阴影部分)与ABC 相似的是( )5(2018永州中考)。

6、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.3 相似三角形应用举例12018长春孙子算经 是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺同时立一根一尺五寸的小标杆,它的影长五寸(提示:1 丈10 尺,1 尺10 寸) ,则竹竿的长为( )A五丈 B四丈五尺C一丈 D五尺22018绍兴学校门口的栏杆如图 27252 所示,栏杆从水平位置 BD 绕 O 点旋。

7、? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 。

8、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。

9、*4.5 相似三角形判定定理的证明,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.会证明相似三角形判定定理;(重点) 2.运用相似三角形的判定定理解决相关问题.(难点),导入新课,问题:相似三角形的判定方法有哪些?, 两角对应相等,两三角形相似. 两边对应成比例且夹角相等,两三角形相似. 三边对应成比例,两三角形相似.,讲授新课,在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明,定理1:两角分别相等的两个三角形相似.,已知:如图,在 ABC 和ABC 中,A = A,B =B. 求证:ABC ABC,A,B,C,A,B,C,A,。

10、*4.5 相似三角形判定定理的证明 相似三角形判定定理的证明 1.会证明相似三角形判定定理; (重点) 2.运用相似三角形的判定定理解决相关问题.(难点) 一、情景导入 相似三角形的判定方法有哪些? 答: (1)两角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似. 怎样证明这些结论呢? 二、合作探究 探究点:相似三角形的判定定理 。

11、第三章第三章 图形的相似图形的相似 3.4.13.4.1 相似三角形的判定相似三角形的判定 基础导练基础导练 1.已知:如图,ADEACDABC,图中相似三角形共有( ) A.1 对 B.2 对 C.3 对 D.4 对 2.如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使ABBC,然后选定E,使 ECBC,用视线确定BC和AE相交于D,此时测得BD=。

12、 第三章第三章 图形的相似图形的相似 3.53.5 相似三角形的应用相似三角形的应用 基础导练基础导练 1.一根 1.5 米长的标杆直立在水平地面上,它在阳光下的影长为 2.1 米,此时一棵水衫树的影长为 10.5 米,这棵水衫树高为( ) A7.5 米 B8 米 C14.7 米 D15.75 米 2.如图,为了测量池塘的宽DE,在岸边找到点C,测得CD30 m,在DC的延长线上找一点A,。

13、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.2 3.4.2 相似三角形的性质相似三角形的性质 教学目标教学目标 掌握相似三角形对应线段(高、中线、角平掌握相似三角形对应线段(高、中线、角平 分线)及相似三角形的面积、周长比与相似分线)及相似三角形的面积、周长比与相似 比之间的关系比之间的关系. . 重点难点:重点难点:相似三角形性。

14、4.7 相似三角形的性质,第四章 图形的相似,第2课时 相似三角形的周长和面积之比,导入新课,讲授新课,当堂练习,课堂小结,1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.(重点) 2.掌握相似三角形的周长比、面积比在实际中的应用.(难点),学习目标,导入新课,问题:我们知道,如果两个三角形相似,它们对应高的比、对应中线的比和对应角平分线的比都等于相似比.那么它们周长的比之间有什么关系?也等于相似比吗?面积之比呢?,A,B,C,A1,B1,C1,问题引入,讲授新课,问题:图中(1)(2)(3)分别是边长为1,2,3的等边三。

15、4.7 相似三角形的性质,第四章 图形的相似,第1课时 相似三角形中的对应线段之比,导入新课,讲授新课,当堂练习,课堂小结,1.明确相似三角形中对应线段与相似比的关系. (重点) 2.能熟练运用相似三角形的性质解决实际问题(难点),学习目标,问题1: ABC与A1B1C1相似吗?,导入新课,相似三角形对应角相等、对应边成比例.,ABC A1B1C1,思考:三角形中,除了角度和边长外,还有哪些几何量?,高、角平分线、中线的长度,周长、面积等,1.CD和C1D1分别是它们的高,你知道 比值是多少吗?,2.如果CD和C1D1分别是他们的对应角平分线呢?3.如果CD和C1D1分。

16、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.2 相似三角形的性质12018随州如图 272 43,平行于 BC 的直线 DE 把ABC 分成面积相等的两部分,则 的值为( )BDAD图 27243A1 B 22C 1 D 12 222018绥化两个相似三角形的最短边分别为 5 cm 和 3 cm,他们的周长之差为 12 cm,那么大三角形的周长为( )A14 cm B16 cm C18 cm D30 cm32018荆门如图 272 44,四边形 ABCD 为平行四边形,E,F 为 CD 边的两个三等分点,连接 AE,BE 交于点 G,则 SEFG S ABG ( )A13 B31C19 D91图 272444一副三角板叠放如图 2724。

17、 第三章第三章 图形的相似图形的相似 3.4.23.4.2 相似三角形的性质相似三角形的性质 基础导练基础导练 1.如图是小孔成像原理示意图,根据图中尺寸,蜡烛在暗盒中所成的像的长是( ) Acm Bcm C cm D1cm 2若两个相似三角形的面积之比为 1:4,则它们的最大边的比是( ) A1:2 B1:4C C.1:5 D 1:16 3若ABCDEF,相似比为 1:2。

18、,苏科数学,6.5相似三角形的性质(2),问题情境,问题1在探索“相似三角形的面积比等于相似比的平方”这个结论的过程,我们发现“相似三角形对应高的比等于相似比”,记得证明的方法了吗? 问题2三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,相似三角形对应高的比等于相似比,三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,ABCABC ,AD和AD分别 是ABC和ABC的中线,设相似 比为k,那么,你能有条理地表达理由吗?,讨论一:,观察与思考,ABCABC ,AD和AD分别是ABC和ABC的角平分线,设 相似比。

19、,苏科数学,6.5相似三角形的性质(1),问题情境,1.关于相似三角形,我们已经研究了什么? 2.关于相似三角形的性质,我们如何进行研究? 3.所有的正方形都相似吗?如果正方形的边长分别是1、2、3、4,它们的周长和面积之间有怎样的关系?,如图,点D、E、F分别是ABC各边的中点 (1)DEF与ABC相似吗?为什么? (2)这两个三角形的相似比是多少? (3)这两个三角形的周长、面积有什么关系?,观察与讨论,继续取DEF的各边中点M、N、P,得到上图,此时:(1)MNP与ABC相似吗?为什么?(2)这两个三角形的相似比是多少?(3)这两个三角形的周长。

20、4.7 相似三角形的性质相似三角形的性质 第第 1 课时课时 相似三角形中的对应线段之比相似三角形中的对应线段之比 1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系; (重点) 2.能熟练运用相似三角形的性质解决实际问题.(难点) 一、情景导入 在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三 角形是相似多边形中的一种,因此三对对应角。

【4.7相似三角形的性质】相关PPT文档
【4.7相似三角形的性质】相关DOC文档
【4.7相似三角形的性质】相关PDF文档
标签 > 4.7相似三角形的性质[编号:148509]