人教版数学九年级下28.1.1正弦函数ppt课件

,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课

人教版数学九年级下28.1.1正弦函数ppt课件Tag内容描述:

1、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课,情境引入,高跟鞋深受很多女性的喜爱,但有时候,如果鞋跟太高,也有可能“喜剧”变“悲剧”.,美国人体工程学研究人员卡特 克雷加文调查发现,70以上的女性喜欢穿鞋跟高度为6至7cm左右的高跟鞋. 但专家认为穿6cm以上的高跟鞋,腿肚、脚背等处的肌肉。

2、26.2实际问题与反比例函数1,知识回顾,K0,K0,当k0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小.,当k0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.,情境引入,1 自行车运动员在长10000米的路程上骑车训练,行使全程所用的时间t(秒)与行驶的速度v(米/秒)之间的函数关系式为 ,当行驶的平均速度为12.5米/秒时,行驶全程所用的时间为。 2 有一平行四边形ABCD,AB边长为30,这边上的高为20。BC边的长为y,这边上的高为x ,则y与x之间的函数关系式为 。,新知探究,例1市。

3、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。

4、数学活动 第十九章 一次函数 新课导入 世界人口每年都在增加世界人口每年都在增加, 滴水的水龙头每时每刻都滴水的水龙头每时每刻都 在漏水在漏水. 如果我们能写出世界人口如果我们能写出世界人口y关于年份关于年份x 的函数关系式,那我们可以近似求出的函数关系式,那我们可以近似求出 未来某年的世界人口总数吗?未来某年的世界人口总数吗? 本节活动课我们就来探讨本节活动课我们就来探讨 这两个问题这两个问。

5、7.6 锐角三角函数的简单应用(1),引例:小明在荡秋千,已知秋千的长度为2m, 求秋千升高1m时,秋千与竖直方向所成的角度.,问题:“五一”节,小明和同学一起到游乐场游玩. 游乐场的大型摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过2min后,小明离地面的高度是多少?,1.摩天轮启动多长时间后,小明离 地面的高度将首次达到10m?,2.小明将有多长时间连续保持在 离地面10m以上的空中?,1.单摆的摆长AB为90cm,当它摆动到 AB的位置时, BAB=11,问这时摆球B 较最低点B升高了多少(精确到1cm)?,A,B,B,2.已知跷跷。

6、,导入新课,讲授新课,当堂练习,课堂小结,28.2 解直角三角形及其应用,第二十八章 锐角三角函数,28.2.1 解直角三角形,1. 了解并掌握解直角三角形的概念; 2. 理解直角三角形中的五个元素之间的联系. (重点) 3. 学会解直角三角形. (难点),导入新课,(1) 三边之间的关系:a2+b2=_;,(2) 锐角之间的关系:A+B=_;,(3) 边角之间的关系:sinA=_,cosA=_,tanA=_.,如图,在RtABC中,共有六个元素(三条边,三个角), 其中C=90.,c2,90,复习引入,讲授新课,在图中的RtABC中, (1) 根据A75,斜边AB6,你能求出这个直角三角形的其他元素吗?,合作探究,75,。

7、第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.3 位 似,第2课时 平面直角坐标系中的位似,1. 理解平面直角坐标系中,位似图形对应点的坐标之间的联系 2. 会用图形的坐标的变化表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律. (重点、难点) 3. 了解四种图形变换 (平移、轴对称、旋转和位似) 的异同,并能在复杂图形中找出来这些变换.,学习目标,导入新课,复习引入,1. 两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做 ,这个交点叫做 位似图形上任意一对对应。

8、数学九年级下册,第二十八章 28.1. 锐角三角函数,如图:在Rt ABC中,C90,,正弦,(1)sinA是一个整体,不是sin乘以A,表示A的正弦; (2) sinA是一个比值, 没有单位; (3)sinA的值只与A的大小有关,与A的位置无关, 即两个锐角相等,这两角的正弦值一定相等; (4)SinA是以A为自变量的函数; (5)对于任意锐角A,有0sinA1;,回味 无穷,1、你能将“其他边之比”用比例的式子表示出来吗?这样的比有多少?,2、当锐角A确定时,A的相邻直角边(邻边)与斜边的比、A的对边与邻边的比也都随之确定吗?为什么?,类比正弦的研究过程;根据相似三角形的性。

9、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第4课时 用计算器求锐角三角函数值及锐角,1. 会使用科学计算器求锐角的三角函数值. (重点) 2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小. (重点) 3. 熟练运用计算器解决锐角三角函数中的问题. (难点),导入新课,复习引入,1,填写下表:,通过前面的学习,我们知道当锐角 A 是 30、 45、60等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角 A 不是这些特殊角,怎样得到它的锐角三角函数值呢?,讲授新课,例1 (1) 用计算器求sin18的值;,。

10、27.2.1 相似三角形的判定,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,第1课时 平行线分线段成比例,1. 理解相似三角形的概念. 2. 理解平行线分线段成比例的基本事实及其推论,掌握相似三角形判定定理的预备定理的有关证明. (重点、难点) 3. 掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算. (重点、难点),学习目标,导入新课,复习引入,1. 相似多边形的对应角 ,对应边 ,对应边的比叫做 .,2. 如图,ABC 和 ABC 相似需要满足什么条件?,相等,成比例,相似比,相似用符号“”表示,。

11、27.3 位 似,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,第1课时 位似图形的概念及画法,1. 掌握位似图形的概念、性质和画法. (重点) 2. 掌握位似与相似的联系与区别. (难点),学习目标,导入新课,如图,是幻灯机放映图片的示意图,在幻灯机放映图片的过程中,这些图片之间有什么关系?,图片引入,连接图片上对应的点,你有什么发现?,下列图形中有相似多边形吗?如果有,这种相似有什么特征?,观察与思考,两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心,判断。

12、初中数学九年级下册,江苏科学技术出版社,二 次 函 数,沭阳如东实验学校初三数学组 吴国玺,课前准备:,方程:,函数:,一元一次方程:,一元二次方程:,反比例函数:,一次函数:,二 次 函 数,y=kx (k0),kx+b=0(k0),目标展示,二 次 函 数,1.理解二次函数的概念,掌握二次函数的表达形式.,2. 会写出实际问题的二次函数关系式,并确定它自变量的取值范围.,方程式,合作探究,2.某地要组织一次篮球联赛,赛制为单循环形式,计划安排21场比赛,则参赛球队数量?,变题,某地要组织一次篮球联赛,赛制为单循环形式,计划安排y场比赛,有x个参赛球队,那么y与x。

13、27.1 图形的相似,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1. 了解相似图形和相似比的概念. 2. 理解相似多边形的定义. 3. 能根据多边形相似进行相关的计算,会根据条件判断两个多边形是否相似. (重点、难点),导入新课,图片引入,大张伟钟爱的印有易烊千玺头像的 T 恤,观察T恤上的每一个易烊千玺,他们有什么关系?,下面的“神烦狗”有什么相同和不同的地方?,讲授新课,观察与思考,相同点:形状相同 不同点:大小不相同,形状相同的图形叫做相似图形.,相似图形的大小不一定相同.,归纳:,1. 图形的放大:,相似图形的关。

14、26.1.2 反比例函数的图象和性质,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 反比例函数的图象和性质,学习目标,1. 经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程 (重点、难点) 2. 会画反比例函数图象,了解和掌握反比例函数的图象和性质. (重点) 3. 能够初步应用反比例函数的图象和性质解题. (重点、难点),导入新课,情境引入,孙杨 2017游泳世锦赛 200米 自由泳夺冠精彩回放,7 月 30 日,2017 游泳世锦赛在西班牙布达佩斯的多瑙河体育中心落下帷幕. 在 8 天的争夺中,中国代表团不断创造佳绩。

15、26.2 实际问题与反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 实际问题中的反比例函数,学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力. 2. 能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力. (重点、难点) 3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出。

16、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 特殊角的三角函数值,1. 运用三角函数的知识,自主探索,推导出30、45、60角的三角函数值. (重点) 2. 熟记三个特殊锐角的三角函数值,并能准确地加 以运用. (难点),导入新课,复习引入,sin A =,cos A =,tan A =,1. 对于sin与tan,角度越大,函数值越 ;对于cos,角度越大,函数值越 .,2. 互余的两角之间的三角函数关系:若A+B=90,则sinA cosB,cosA sinB,tanA tanB = .,大,小,=,=,1,讲授新课,两块三角尺中有几个不同的锐角?分别求出这几个锐角。

17、第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,26.2 实际问题与反比例函数,第2课时 其他学科中的反比例函数,学习目标,1. 通过对“杠杆原理”等实际问题与反比例函数关系的 探究,使学生体会数学建模思想和学以致用的数学 理念,并能从函数的观点来解决一些实际问题. (重点) 2. 掌握反比例函数在其他学科中的运用,体验学科的整合思想. (重点、难点),导入新课,情境引入,电影片段欣赏,在周星驰的电影西游降魔篇中,村民们为了制服水妖而合力大战. 观看完影片片段,你能说说他们是如何制服水妖的吗? 这个方法的原理是什么?,。

18、26.1 反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,26.1.1 反比例函数,1. 理解并掌握反比例函数的概念. (重点) 2. 从实际问题中抽象出反比例函数的概念,能根据已知条件确定反比例函数的解析式. (重点、难点),学习目标,导入新课,情境引入,欣赏视频:,生活中我们常常通过控制电阻的变化来实现舞台灯光的效果. 在电压 U 一定时,当 R 变大时,电流 I 变小,灯光就变暗,相反,当 R 变小时,电流 I 变大,灯光变亮. 你能写出这些量之间的关系式吗?,当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为。

19、初中数学九年级下册 (苏科版),沭阳如东实验学校,7.2锐角三角函数正弦、余弦,A,B,C,tanA=,tanB=,练习:如图,ABC的周长为36,且AB=AC=10, 求tanB.,复习回顾,合作探究,当直角三角形的一个锐角的大小确定时,其对边与斜边、邻边与斜边的比值也是惟一确定的吗?,合作探究,如图,小明沿着斜坡向上行走了13m,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?,行走了a m呢?,在上面的情形中,小明的位置沿水平方向又分别移动了多少?,合作探究,RtOPMRtOP1M1,P1M1 OP1,OM O P,OM1 OP1,=,可见:如果直角三角形的。

20、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 正弦函数,1. 理解并掌握锐角正弦的定义,知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定 (即正弦值不变). (重点)2. 能根据正弦概念正确进行计算. (重点、难点),为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上建一座扬水站,对坡面绿地进行喷灌. 先测得斜坡的坡脚 (A )为 30,为使出水口的高度为 35 m,需要准备多长的水管?,情境引入,导入新课,讲授新课,从上述情境中,你可以找到一个什么数学问题呢?能否。

【人教版数学九年级下28.1.1】相关PPT文档
标签 > 人教版数学九年级下28.1.1正弦函数ppt课件[编号:88678]