,27.2 相似三角形 27.2.1 相似三角形的判定 第1课时,1.理解平行线分线段成比例定理; 2.知道当ABC与DEF的相似比为k时,DEF与ABC的相似比为 .,即对应角相等对应边的比相等我们说ABC与DEF相似,记作 ABCDEF, ABC和DEF的相似比为k, DEF与ABC的相似比为
27图形的相似课件人教版九年级下Tag内容描述:
1、,27.2 相似三角形 27.2.1 相似三角形的判定 第1课时,1.理解平行线分线段成比例定理; 2.知道当ABC与DEF的相似比为k时,DEF与ABC的相似比为 .,即对应角相等对应边的比相等我们说ABC与DEF相似,记作 ABCDEF, ABC和DEF的相似比为k, DEF与ABC的相似比为 .,如果A=D, B=E, C=F,,判定两个三角形相似时,是否存在简便的判定方法呢?,问题 如图l1l2 l3,你能否发现在两直线a,b上截得的线段有什么关系?,通过计算可以得到:,由此可得到:,平行线分线段成比例定理:三条平行线截两条直线所得的对应线段的比相等.,说明: 定理的条件是“三条平行线。
2、27.2.1 相似三角形的判定 第3课时,1.理解定理“两边对应成比例且夹角相等的两个三角形相似”; 2.能灵活地选择定理判定相似三角形.,判断两个三角形相似,你有哪些方法,方法1:通过定义(不常用),方法2:通过平行线.,方法3:三边对应成比例.,如果有一点E在边AC上,那么点E应该在什么位置才能使ADEABC相似呢?,所画如图所示,此时,,如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形一定相似吗?,A,B,C,E,D,证明:在ABC的边AB,AC(或它们的延长线) 上分别截取AD=AB,AE=AC,连结DE. A=A,这样,ADEAB。
3、27.2.1 相似三角形的判定 第4课时,1.理解定理“两角对应相等,两三角形相似”; 2.能灵活地选择定理判定相似三角形.,这两个三角形的三个内角的大小有什么a关系?,三个内角对应相等的两个三角形一定相似吗?,三个内角对应相等.,观察你与老师的直角三角尺 , 相似吗?,画一个三角形,使三个角分别为60,45, 75 .,分别量出两个三角形三边的长度; 这两个三角形相似吗?,即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_,相似,一定需三个角对应相等吗?,相似三角形的判别方法:如果一个三角形的两角分别与另一。
4、23.1 图形的旋转,第二十三章 旋转,1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题,把一个图形绕着某一定点O 转动一定角度的图形变换叫做_这个定点O 叫_,转动的角叫做_,如果图形上的点P经过旋转变为点P,那么点P和P叫做这个旋转的_.,旋转,旋转中心,旋转角,对应点,点击播放动画展示,O,P,P,请大家在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸先在。
5、2018-2019 年九年级数学下学期 27.1图形的相似同步测试一、选择题:1、 (2018重庆)制作一块 3m2m 长方形广告牌的成本是 120 元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的 3 倍,那么扩大后长方形广告牌的成本是( )A360 元 B720 元 C1080 元 D2160 元2、 “相似的图形”是 ( )A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形3、若 m、n、a、b 成比例线段,则下列各式正确的是( )Amnab BmnbaCabnm Damnb4、下列多边形一定相似的是 ( )A.两个平行四边形 B .两个菱形 C .两个矩形 D.两。
6、6.3 相似图形,九年级(下册),作 者:刘倩(连云港市东港中学新校区),初中数学,欣赏,6.3 相似图形,下列各组图形有什么共同的特征?你还能举出具有这样特征的图形吗?,形状相同的图形叫做相似形(similar figures),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,1下图(1)中的两个正三角形“形状相同”,它们的边和角有怎样的数量关系?图(2)中的两个“形状相同”的三角形呢?,C,B,A,A,A,A,B,B,B,C,C,C,(1),(2),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,2下图(1)中的两个正方形“形状相同”,它们的边和角。
7、27.2.3 相似三角形的周长 与面积,1、理解相似三角形周长的比等于相似比,面积的比等于相似比的平方,相似三角形对应高的比也等于相似比;多边形的周长的比等于相似比,面积的比等于相似比的平方。 2、能应用相似三角形的有关性质解决相关问题.,(2)相似三角形有什么性质?根据是什么?相似多边形呢?,根据定义:,对应角相等, 对应边的比相等;,(3)相似三角形的对应边的比叫什么?,相似比,(4)ABC与ABC 的相似 比为k,则ABC 与ABC的相似比是多少?,(1)相似三角形有哪些判定方法?,如果两个三角形相似,它们的周长之间有什么关系? 两。
8、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。
9、27.3 位 似,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,第1课时 位似图形的概念及画法,1. 掌握位似图形的概念、性质和画法. (重点) 2. 掌握位似与相似的联系与区别. (难点),学习目标,导入新课,如图,是幻灯机放映图片的示意图,在幻灯机放映图片的过程中,这些图片之间有什么关系?,图片引入,连接图片上对应的点,你有什么发现?,下列图形中有相似多边形吗?如果有,这种相似有什么特征?,观察与思考,两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心,判断。
10、,相似三角形的性质,相似三角形的性质 1 相似三角形的对应角相等,对应边成比例. 2 相似三角形对应高的比,对应中线的比与 对应角平分线的比都等于相似比. 3 相似三角形周长的比等于相似比, 面积比等于相似比的平方.,复习,练习:,ABC中,MNBC,ADBC, 则,M,N,E,议一议:,如图,四边形ABCD与四边形ABCD相似,且相似比为k,它们周长的比、面积的比与相似比有什么关系?,如果把四边形换成五边形,你刚才的结论是否仍然成立呢?,相似多边形的周长比等于 , 面积比等于 _.,相似比,相似比的平方,相似多边形的性质:,如图, ABC 是一块锐角三角形余料,边 BC12。
11、6.3 相似图形制作人:赵叶成,九年级(下册),初中数学,学习目标及重难点,1、了解形状相同的图形是相似图形,能在诸多图形中找出相似图形; 2、理解相似三角形、相似多边形、相似比的概念; 重点:相似三角形定义的理解和认识;难点:准确判断出相似三角形的对应角和对应边;,下列各组图形有什么共同的特征?你还能举出具有这样特征的图形吗?,形状相同的图形叫做相似形(similar figures),6.3 相似图形,“形状相同”的两个图形具有怎样的特征呢?,1同学们手中的两个正三角形“形状相同”,它们的边和角有怎样的数量关系?另外两个“形状相。
12、图形的相似,1、了解比例的基本性质,黄金分割 2、通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方 3、了解两个三角形相似的概念,探索两个三角形相似的条件 4、了解图形的位似,能够利用位似将一个图形放大或缩小 5、通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题 6、从微观的角度去研究相似,用坐标来说明这种基本变换,知识要点:,相似图形,定义,性质,相似三角形,定义,判定,性质,应用,画法,坐标,生活中我们会碰到许多这样形状相。
13、127.1图形的相似测试一、选择题1、下列各组线段中是成比例线段的是( )A1cm,2cm,3cm,4cm B1cm,2cm,2cm,4cmC3cm,5cm,9cm,13cm D1cm,2cm,2cm,3cm2、.下列四条线段中,不能成比例的是( )A.a3, b6, c2, d4B.a1, b , c , dC.a4, b6, c5, d10D.a2, b , c , d23、已知 xy=mn,则把它改写成比例式后,错误的是( )A = B = C = D =4、若 = ,则 的值为( )A B C D5、下列说法中,错误的是( )A正六边形都相似 B等腰直角三角形都相似C矩形都相似 D正方形都相似 6、下列图形不相似的是( )A所有的圆 B所有的正方形 C所有的。
14、27.1 图形的相似,请观察下面几组图片,试试你的眼力!,你从上述几组图片发现了什么?,它们的大小不一定相等, 形状相同.,1、相似图形的概念:,形状相同的图形叫做相似图形。,27.1 相似的图形,注意:相似图形的大小不一定相同。,形状、大小都相同的图形称为全等图形。,2、全等图形:,注:全等图形是相似图形的特殊情况。,3、图形的相似具有传递性;,如果图形与图形相似,图形与图形相似, 那么图形与图形相似。,生活中的相似图形,放大镜下的图形和原来的图形相似吗?,放大镜下的角与原图形中角是什么关系?,你看到过哈哈镜吗?哈哈镜中的形象。
15、第一课: 图形的相似,一、情景引入,天坛,八达岭长城,国旗,五角星,我们刚才所见到的图形有什么联系?,想一想,其中一个图形可以看作是另一个图形放大或者缩小得到的,二、相似图形的概念: 1、概念,形状相同的图形叫做相似图形。,注意:相似图形的大小不一定相同。,形状、大小都相同的图形称为全等图形。,2、全等图形与相似图形的关系:,注:全等图形是相似图形的特殊情况。,3、图形的相似具有传递性;,如果图形与图形相似,图形与图形相似, 那么图形与图形相似。,图形A,图形B,图形C,三、研究相似多边形的主要特征,1、探究: 图中的A1B1C1是。
16、相似单元培优检测题一选择题1如图,线段 BD, CE 相交于点 A, DE BC若 BC3, DE1.5, AD2,则 AB 的长为( )A2 B3 C4 D52如图,点 F 是 ABCD 的边 CD 上一点,直线 BF 交 AD 的延长线于点 E,则下列结论错误的是( )A B C D3我国古代数学九章算术中,有个“井深几何”问题:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1 尺10 寸) ,问井深几何?其意思如图所示,则井深 BD 的长为( )A12 尺 B56 尺 5 寸 C57 尺 5 寸 D62 尺 5 寸4如图,以 A, B, C 为顶点的三角形与以 D, E, F 为顶点的三角形相似,则这。
17、第 1 页,共 11 页图形的相似测试时间:60 总分:100一、选择题(本大题共 9 小题,共 36.0 分)1. 下列四组图形中,一定相似的图形是 ( )A. 各有一个角是 的两个等腰三角形30B. 有两边之比都等于 2:3 的两个三角形C. 各有一个角是 的两个等腰三角形120D. 各有一个角是直角的两个三角形2. 下列说法正确的是 ( )A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似3. 下列结论中,错误的有: ( )所有的菱形都相似; 放大镜下的图形与原图形不一定相似; 等边三角形都相似;。
18、第 1 页(共 21 页)人教版九年级下学期27.1 图形的相似同步练习卷一选择题(共 8 小题)1将一个四边形放在 2 倍的放大镜下,则下列说法不正确的是( )A四边形的边长扩大为原来的 2 倍B四边形的各角扩大为原来的 2 倍C四边形的周长扩大为原来的 2 倍D四边形的面积扩大为原来的 4 倍2有一块多边形草坪,在市政建设设计图纸上的面积为 300cm2,其中一条边的长度为5cm经测量,这条边的实际长度为 20m,则这块草坪的实际面积是( )A1200m 2 B2400m 2 C3600m 2 D4800m 23点 P 把线段 AB 分割成 AP 和 PB 两段,如果 AP 是 PB 和 AB 的比例中。
19、27.1 图形的相似,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1. 了解相似图形和相似比的概念. 2. 理解相似多边形的定义. 3. 能根据多边形相似进行相关的计算,会根据条件判断两个多边形是否相似. (重点、难点),导入新课,图片引入,大张伟钟爱的印有易烊千玺头像的 T 恤,观察T恤上的每一个易烊千玺,他们有什么关系?,下面的“神烦狗”有什么相同和不同的地方?,讲授新课,观察与思考,相同点:形状相同 不同点:大小不相同,形状相同的图形叫做相似图形.,相似图形的大小不一定相同.,归纳:,1. 图形的放大:,相似图形的关。
20、第二十七章 相似 27.1 图形的相似,1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念; 2.理解相似图形的性质和判定.,请观察下面几组图片 你能发现它们有什么特点吗?,形状相同,大小不一定相同,我们把这些形状相同的图形叫做相似图形.,我们把这些形状相同的图形叫做相似图形.,两两相似的几何图形,下图是人们从平面镜及哈哈镜里看到的不同镜像, 它们相似吗?,观察下列图形,哪些是相似图形?,观察下面的图形(a)(g),其中哪些是与图形(1)、(2)、(3)相似的?,A B D F,下列图形中_与_是相似的.,(1) (2) (3) (4),选一选,(1)。