1、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形相似,一组直角边和斜边成比例的两个直角三角 形相似,
2、2. 三角形除了三个角,三条边外,还有哪些要素?,高,中线,角平分线,周长,面积,如图,ABC ABC,相似比为 k,它们对应高、对应中线、对应角平分线的比各是多少?,讲授新课,合作探究,ABC ABC, BB ,,解:如图,分别作出 ABC 和 A B C 的高 AD 和 A D ,则ADB =A D B=90.,ABD A B D .,A,B,C,A,B,C,D,D,类似地,可以证明相似三角形对应中线、角平分线的比也等于相似比.,由此我们可以得到:,相似三角形对应高的比等于相似比.,一般地,我们有:相似三角形对应线段的比等于相似比.,归纳:,解: ABC DEF,,例1 已知 ABCDEF
3、,BG、EH 分别是 ABC和 DEF 的角平分线,BC = 6 cm,EF = 4cm,BG= 4.8 cm. 求 EH 的长., (相似三角形对应 角平分线的比等于相似比),, ,解得 EH = 3.2.,典例精析, 故 EH 的长为 3.2 cm.,1. 如果两个相似三角形的对应高的比为 2 : 3,那么对 应角平分线的比是 ,对应边上的中线的比是 _ . 2. ABC 与 ABC 的相似比为3 : 4,若 BC 边上的高 AD12 cm,则 BC 边上的高 AD _ .,2 : 3,2 : 3,16 cm,练一练,相似三角形的周长比也等于相似比吗?为什么?,想一想:,如果 ABC AB
4、C,相似比为 k,那么,因此,ABk AB,BCkBC,CAkCA,,从而,如图,ABC ABC,相似比为 k,它们的面积比是多少?,合作探究,由前面的结论,我们有,A,B,C,A,B,C,D,D,相似三角形面积的比等于相似比的平方,由此得出:,归纳:,1. 已知两个三角形相似,请完成下列表格:,试一试:,2,4,100,100,k,k2,2. 把一个三角形变成和它相似的三角形,(1) 如果边长扩大为原来的 5 倍,那么面积扩大为 原来的_倍;(2) 如果面积扩大为原来的 100 倍,那么边长扩大为原来的_倍.,25,10,3. 两个相似三角形的一对对应边分别是 35 cm、14 cm,(1)
5、 它们的周长差 60 cm,这两个三角形的周长分别是_;(2) 它们的面积之和是 58 cm2,这两个三角形的面积分别是_.,100 cm、40 cm,50 cm2、8 cm2,解:在 ABC 和 DEF 中, AB=2DE,AC=2DF,,又 D=A,, DEF ABC ,相似比为 1 : 2.,例2 如图,在 ABC 和 DEF 中,AB = 2 DE ,AC = 2 DF,A = D. 若 ABC 的边 BC 上的高为 6,面积为 ,求 DEF 的边 EF 上的高和面积.,ABC 的边 BC 上的高为 6,面积为 ,,DEF 的边 EF 上的高为 6 = 3,,面积为,如果两个相似三角形
6、的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为_.,练一练,例3 如图,D,E 分别是 AC,AB 上的点,已知ABC 的面积为100 cm2,且 ,求 四边形 BCDE 的面积., ADE ABC., 它们的相似比为 3 : 5, 面积比为 9 : 25.,解: BAC = DAE,且,又 ABC 的面积为 100 cm2,, ADE 的面积为 36 cm2 ., 四边形 BCDE 的面积为10036 = 64 (cm2).,如图,ABC 中,点 D、E、F 分别在 AB、AC、BC 上,且 DEBC,EFAB. 当 D 点为 AB 中点时,求 S四边形BF
7、ED : SABC 的值.,练一练,解: DEBC,D 为 AB 中点, ADE ABC ,相似比为 1 : 2,面积比为 1 : 4.,又 EFAB, EFC ABC ,相似比为 1 : 2, 面积比为 1 : 4. 设 SABC = 4,则 SADE = 1,SEFC = 1, S四边形BFED = SABCSADESEFC = 411 = 2, S四边形BFED : SABC = 2 : 4 =,1. 判断:(1) 一个三角形的各边长扩大为原来的 5 倍,这个 三角形的周长也扩大为原来的 5 倍 ( )(2) 一个四边形的各边长扩大为原来的 9 倍,这个 四边形的面积也扩大为原来的 9
8、倍 ( ),当堂练习,3. 连接三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于_,面积 比等于_.,1 : 2,1 : 4,2. 在 ABC 和 DEF 中,AB2 DE,AC2 DF,AD,AP,DQ 是中线,若 AP2,则 DQ的值为 ( )A2 B4 C1 D.,C,4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm,若较大三角形的周长是 42 cm,面积是 12 cm2,则较小三角形的周长_cm,面积为_cm2.,14,5. 如图,这是圆桌正上方的灯泡 (点A) 发出的光线照 射桌面形成阴影的示意图,已知桌面的直径为 1.2 米,桌面距离地面为 1
9、米,若灯泡距离地面 3 米, 则地面上阴影部分的面积约为多少 (结果保留两位 小数)?,解: FH = 1 米,AH = 3 米,桌面的直径为 1.2 米, AF = AHFH = 2 (米),DF = 1.22 = 0.6 (米).DFCH,ADF ACH,, 即,解得 CH = 0.9米. 阴影部分的面积为:,(平方米).,答:地面上阴影部分的面积为 2.54 平方米.,6. ABC 中,DEBC,EFAB,已知 ADE 和EFC 的面积分别为 4 和 9,求 ABC 的面积.,解: DEBC,EFAB, ADE ABC, ADE =EFC,A =CEF, ADE EFC. 又SADE : SEFC = 4 : 9,, AE : EC=2:3, 则 AE : AC =2 : 5,, SADE : SABC = 4 : 25, SABC = 25.,7. 如图,ABC 中,DEBC,DE 分别交 AB、AC 于点 D、E,SADE2 SDCE,求 SADE SABC.,解:过点 D 作 AC 的垂线,交点为 F,则,又 DEBC, ADE ABC.,即 SADE : SABC 4 : 9.,相似三角形的性质,相似三角形对应线段的比等于相似比,课堂小结,相似三角形面积的比等于相似比的平方,相似三角形性质的运用,