,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 利用方位角、坡度解直角三角形,1. 正确理解方向角、坡度的概念. (重点) 2. 能运用解直角三角形知识解决方向角、坡度的问题;能够掌握综合性较强的题型、融会贯通地运用相关的数学知识,进一步提高运用
4.6利用相似三角形测高课件Tag内容描述:
1、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 利用方位角、坡度解直角三角形,1. 正确理解方向角、坡度的概念. (重点) 2. 能运用解直角三角形知识解决方向角、坡度的问题;能够掌握综合性较强的题型、融会贯通地运用相关的数学知识,进一步提高运用解直角三角形知识分析解决问题的综合能力. (重点、难点),导入新课,以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于90的角,叫做方位角. 如图所示:,方位角,北偏东30,南偏西45,复习引入,讲授新课,典例精析,例1 如图,一艘海轮位于。
2、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第2课时 利用仰俯角解直角三角形,1. 巩固解直角三角形有关知识. (重点) 2. 能运用解直角三角形知识解决仰角和俯角有关的实际问题,在解题过程中进一步体会数形结合、转化、方程的数学思想,并从这些问题中归纳出常见的基本模型及解题思路. (重点、难点),导入新课,某探险者某天到达如 图所示的点A 处时,他准 备估算出离他的目的地, 海拔为3 500 m的山峰顶点 B处的水平距离.他能想出 一个可行的办法吗?通过这节课的学习,相信你也行.,问题引入,讲授新课。
3、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。
4、4.7 相似三角形的性质,第四章 图形的相似,第2课时 相似三角形的周长和面积之比,导入新课,讲授新课,当堂练习,课堂小结,1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.(重点) 2.掌握相似三角形的周长比、面积比在实际中的应用.(难点),学习目标,导入新课,问题:我们知道,如果两个三角形相似,它们对应高的比、对应中线的比和对应角平分线的比都等于相似比.那么它们周长的比之间有什么关系?也等于相似比吗?面积之比呢?,A,B,C,A1,B1,C1,问题引入,讲授新课,问题:图中(1)(2)(3)分别是边长为1,2,3的等边三。
5、4.7 相似三角形的性质,第四章 图形的相似,第1课时 相似三角形中的对应线段之比,导入新课,讲授新课,当堂练习,课堂小结,1.明确相似三角形中对应线段与相似比的关系. (重点) 2.能熟练运用相似三角形的性质解决实际问题(难点),学习目标,问题1: ABC与A1B1C1相似吗?,导入新课,相似三角形对应角相等、对应边成比例.,ABC A1B1C1,思考:三角形中,除了角度和边长外,还有哪些几何量?,高、角平分线、中线的长度,周长、面积等,1.CD和C1D1分别是它们的高,你知道 比值是多少吗?,2.如果CD和C1D1分别是他们的对应角平分线呢?3.如果CD和C1D1分。
6、27.2.3 相似三角形的周长 与面积,1、理解相似三角形周长的比等于相似比,面积的比等于相似比的平方,相似三角形对应高的比也等于相似比;多边形的周长的比等于相似比,面积的比等于相似比的平方。 2、能应用相似三角形的有关性质解决相关问题.,(2)相似三角形有什么性质?根据是什么?相似多边形呢?,根据定义:,对应角相等, 对应边的比相等;,(3)相似三角形的对应边的比叫什么?,相似比,(4)ABC与ABC 的相似 比为k,则ABC 与ABC的相似比是多少?,(1)相似三角形有哪些判定方法?,如果两个三角形相似,它们的周长之间有什么关系? 两。
7、 3.5 3.5 相似三角形的应用相似三角形的应用 第第3 3章章 图形的相似图形的相似 教学目标教学目标 1.1.会应用相似三角形的性质和判定解决实际问题会应用相似三角形的性质和判定解决实际问题 2.2.利用相似三角形解决实际问题中不能直接测量的物利用相似三角形解决实际问题中不能直接测量的物 体的长度的问题,让学生体会数学转化的思想。体的长度的问题,让学生体会数学转化的思想。 重点:重点:运用。
8、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.1 3.4.1 相似三角形的判定相似三角形的判定 教学目标教学目标 1.1. 了解相似三角形的判定方法会用平行法判了解相似三角形的判定方法会用平行法判 定两个三角形相似定两个三角形相似 重点:重点: 用平行法判定两个三角形相似用平行法判定两个三角形相似 难点:难点:平行法判定三角形相似定。
9、 3.4 3.4 相似三角形的判定与性质相似三角形的判定与性质 第第3 3章章 图形的相似图形的相似 3.4.2 3.4.2 相似三角形的性质相似三角形的性质 教学目标教学目标 掌握相似三角形对应线段(高、中线、角平掌握相似三角形对应线段(高、中线、角平 分线)及相似三角形的面积、周长比与相似分线)及相似三角形的面积、周长比与相似 比之间的关系比之间的关系. . 重点难点:重点难点:相似三角形性。
10、第四章 图形的相似,4.4 探究三角形相似的条件,第2课时 利用两边及夹角判定三角形相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.掌握相似三角形的判定定理2;(重点) 2.能熟练运用相似三角形的判定定理2(难点),问题1.有两边对应成比例的两个三角形相似吗?,不相似,观察与思考,问题2.类比三角形全等的判定方法(SAS,SSS),猜想可以添加什么条件来判定两个三角形相似?,相似,导入新课,任意画ABC; 再画ABC,使A=A,且 量出BC及BC的长,计算 的值,并比较是否三边都对应成比例? 量出B与B的度数,B=B吗?由此可推出C=C吗?为什么? 。
11、,课时26 相似三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,夯实基本 知已知彼,4. 相似三角形的判定 (1)两边对应_,且夹角_的两个三角形相似 (2)两角对应相等的两个三角形相似 (3)三边对应_的两个三角形相似 温馨提示 直角三角形相似的条件:两直角边对应成比例的两个直角三角形相似有一个锐角对应相等的两直角三角形相似有斜边和一直角边对应成比例的两个直角三角形相似 5. 位似图形及性质 (1)定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,。
12、*4.5 相似三角形判定定理的证明,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.会证明相似三角形判定定理;(重点) 2.运用相似三角形的判定定理解决相关问题.(难点),导入新课,问题:相似三角形的判定方法有哪些?, 两角对应相等,两三角形相似. 两边对应成比例且夹角相等,两三角形相似. 三边对应成比例,两三角形相似.,讲授新课,在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明,定理1:两角分别相等的两个三角形相似.,已知:如图,在 ABC 和ABC 中,A = A,B =B. 求证:ABC ABC,A,B,C,A,B,C,A,。
13、,苏科数学,6.5相似三角形的性质(2),问题情境,问题1在探索“相似三角形的面积比等于相似比的平方”这个结论的过程,我们发现“相似三角形对应高的比等于相似比”,记得证明的方法了吗? 问题2三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,相似三角形对应高的比等于相似比,三角形中的特殊线段还有哪些?它们是否也具有类似的性质呢?你有何猜想?,ABCABC ,AD和AD分别 是ABC和ABC的中线,设相似 比为k,那么,你能有条理地表达理由吗?,讨论一:,观察与思考,ABCABC ,AD和AD分别是ABC和ABC的角平分线,设 相似比。
14、,苏科数学,6.7用相似三角形解决问题(2),夜晚,当人在路灯下行走时,会看到自己的影子有何变化?,问题情境,路灯、台灯、手电筒的光可以看成是 从一个点发出的.如图,在点光源的照射下, 物体所产生的影称为中心投影,思考:在点光源的照射下,不同物体 的物高与影长成比例吗?,画图与观察,3根底部在同一直线上的旗杆直立在地面上,第1、第2根旗杆在同一灯光下的影子如图请在图中画出光源的位置,并画出第3根旗杆在该灯光下的影子(不写画法),如图,某人身高CD1.6m,在路灯A照射下影长为DE,他与灯杆AB的距离BD5m(1)AB6m,求DE(精确到0。
15、,苏科数学,6.7用相似三角形解决问题(1),问题情境,问题1当人们在阳光下行走时,会出现什么现象?,问题2你能举出生活中的例子吗 ?,在平行光线的照射下,物体所产生的影称为平行投影,在操场上,分别竖立长度不同的甲、乙、丙3根木杆,在同一时刻分别测量这3根木杆在阳光下的影长,并将有关数据填入下表:,通过观察、测量, 你发现了什么?请与同学交流,在平行光线的照射下,不同物体的物高与影长成比例,实验与计算,如图,甲木杆AB在阳光下的影长为BC试在图中画出同一时刻乙、丙两根木杆在阳光下的影长,思考与归纳,1在阳光下,在同一时刻,。
16、,苏科数学,6.5相似三角形的性质(1),问题情境,1.关于相似三角形,我们已经研究了什么? 2.关于相似三角形的性质,我们如何进行研究? 3.所有的正方形都相似吗?如果正方形的边长分别是1、2、3、4,它们的周长和面积之间有怎样的关系?,如图,点D、E、F分别是ABC各边的中点 (1)DEF与ABC相似吗?为什么? (2)这两个三角形的相似比是多少? (3)这两个三角形的周长、面积有什么关系?,观察与讨论,继续取DEF的各边中点M、N、P,得到上图,此时:(1)MNP与ABC相似吗?为什么?(2)这两个三角形的相似比是多少?(3)这两个三角形的周长。
17、4.4 探索三角形相似的条件,第四章 图形的相似,第1课时 利用两角判定三角形相似,导入新课,讲授新课,当堂练习,课堂小结,1.理解相似三角形的定义,掌握定义中的两个条件. 2.掌握相似三角形的判定定理1.(重点) 3.能熟练运用相似三角形的判定定理1.(难点),学习目标,问题1:这两个三角形有什么关系?,观察与思考,全等三角形,那这样变化一下呢?,相似三角形,相似三角形定义:我们把三角分别相等、三边成比例的两个三角形叫做相似三角形。,对应角?,对应边?,问题2 相似多边形的定义是什么?那根据相似多边形的定义,你能说说什么叫相似三角形。
18、4.6 利用相似三角形测高利用相似三角形测高 1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验; (重点) 2.灵活运用三角形相似的知识解决实际问题.(难点) 一、情景导入 胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一” ,古希腊数学家、 天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度. 你能根据图示说出他测量金字塔的原理吗? 二、合作。
19、4.6 利用相似三角形测高,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,1.通过测量旗杆的高度的活动,并复习巩固相似三角形有关知识.(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点),学习目标,世界上最高的树 红杉,导入新课,乐山大佛,台北101大楼,怎样测量这些非常高大物体的高度?,胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家,天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度,你能根据图示说出他测量金字塔的原理吗?,讲授新课,例1:如下图,如果木杆EF长2 m。